# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from akg.utils import kernel_exec as utils from test_op import l2loss from tensorio import compare_tensor from gen_random import random_gaussian def l2loss_run(shape, dtype, kernel_name, attrs): if 'tuning' in attrs.keys(): t = attrs.get("tuning", False) kernel_name = attrs.get("kernel_name", False) mod = utils.op_build_test(l2loss.l2loss, [shape], [dtype], kernel_name=kernel_name, attrs=attrs, tuning=t) if t: expect, input, output = gen_data(dtype, shape) return mod, expect, (input, output) else: return mod else: mod = utils.op_build_test(l2loss.l2loss, [shape], [dtype], kernel_name=kernel_name, attrs=attrs) expect, input, output = gen_data(dtype, shape) output = utils.mod_launch(mod, (input, output), expect=expect) # unified launch return input, output, expect, compare_tensor(output, expect, rtol=5e-03, equal_nan=True) def gen_data(dtype, shape): support_list = {"float16": np.float16, "float32": np.float32} input = random_gaussian(shape, miu=1, sigma=0.1).astype(support_list[dtype]) / 100 expect = np.sum(np.square(input * (1.0 / (2 ** (0.5))))) # expect = (np.square(input * (1.0 / (2 ** (0.5))))) output = np.full((1,), np.nan, dtype) return expect, input, output