# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """expm1_run""" import numpy as np from akg.utils import kernel_exec as utils from test_op import expm1 from tensorio import compare_tensor from gen_random import random_gaussian def expm1_run(shape, dtype, attrs): """expm1_run""" if 'tuning' in attrs.keys(): t = attrs.get("tuning", False) kernel_name = attrs.get("kernel_name", False) mod = utils.op_build_test(expm1.expm1, [shape], [dtype], kernel_name=kernel_name, attrs=attrs, tuning=t) if t: expect, inputs, output = gen_data(dtype, shape) return mod, expect, (inputs, output) return mod else: mod = utils.op_build_test(expm1.expm1, [shape], [dtype], kernel_name='expm1', attrs=attrs) expect, inputs, output = gen_data(dtype, shape) output = utils.mod_launch(mod, (inputs, output), expect=expect) return inputs, output, expect, compare_tensor(output, expect, rtol=5e-03, equal_nan=True) def gen_data(dtype, shape): """gen_data""" inputs = random_gaussian(shape, miu=1, sigma=0.1).astype(dtype) expect = np.expm1(inputs) output = np.full(expect.shape, np.nan, dtype) return expect, inputs, output