# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from akg.utils import kernel_exec as utils import numpy as np from test_op.expand_dims_ad import expand_dims_ad from tensorio import compare_tensor def expand_dims_ad_run(shape, axis, dtype, attrs): if 'tuning' in attrs.keys(): t = attrs.get("tuning", False) kernel_name = attrs.get("kernel_name", False) input_np = np.random.uniform(low=-1.0, high=1.0, size=shape).astype(dtype) forward_output = np.expand_dims(input_np, axis=axis) mod = utils.op_build_test(expand_dims_ad, [forward_output.shape, shape], [dtype, dtype], kernel_name=kernel_name, op_attrs=[axis], attrs=attrs, tuning=t) if t: expect, head_np, output = gen_data(dtype, forward_output, shape) return mod, expect, (head_np, input_np, output) else: return mod else: input_np = np.random.uniform(low=-1.0, high=1.0, size=shape).astype(dtype) forward_output = np.expand_dims(input_np, axis=axis) mod = utils.op_build_test(expand_dims_ad, [forward_output.shape, shape], [dtype, dtype], kernel_name='expand_dims_ad', op_attrs=[axis], attrs=attrs) expect, head_np, output = gen_data(dtype, forward_output, shape) output = utils.mod_launch(mod, (head_np, input_np, output), expect=expect) return (head_np, input_np, axis), output, expect, compare_tensor(output, expect, atol=0.1) def gen_data(dtype, forward_output, shape): head_np = np.random.uniform(low=-5.0, high=5.0, size=forward_output.shape).astype(dtype) expect = np.copy(head_np) expect = np.reshape(expect, shape) output = np.full(expect.shape, np.nan, dtype) return expect, head_np, output