# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """cos run function.""" import numpy as np from tensorio import compare_tensor from akg.utils import kernel_exec as utils from test_op import cos from base import get_rtol_atol from gen_random import random_gaussian def cos_run(shape, dtype, attrs): # Generate data for testing the op inputs = random_gaussian(shape, miu=0, sigma=0.1).astype(dtype) expect = np.cos(inputs) # inputs and output to hold the data output = np.full(shape, np.nan, dtype) if 'tuning' in attrs.keys(): t = attrs.get("tuning", False) kernel_name = attrs.get("kernel_name", False) mod = utils.op_build_test(cos.cos, [shape], [dtype], kernel_name=kernel_name, attrs=attrs, tuning=t) if t: return mod, expect, (inputs, output) else: return mod else: mod = utils.op_build_test(cos.cos, [shape], [dtype], kernel_name='cos', attrs=attrs) # result_tvm output = utils.mod_launch(mod, (inputs, output)) # compare result rtol, atol = get_rtol_atol("cos", dtype) TestCase_Result = compare_tensor(output, expect, rtol=rtol, atol=atol, equal_nan=False) return inputs, output, expect, TestCase_Result