# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from akg.utils import kernel_exec as utils from test_op import concat from tensorio import compare_tensor from gen_random import random_gaussian def concat_run(shapes, dtype, axis, attrs): op_attrs = [axis] if 'tuning' in attrs.keys(): t = attrs.get("tuning", False) kernel_name = attrs.get("kernel_name", False) mod = utils.op_build_test(concat.concat, [shapes], [dtype.lower()], op_attrs, kernel_name=kernel_name, attrs=attrs, tuning=t) if t: args, expect, inputs = gen_data(axis, dtype, shapes) return mod, expect, tuple(args) else: return mod else: mod = utils.op_build_test(concat.concat, [shapes], [dtype.lower()], op_attrs, kernel_name='concat', attrs=attrs) args, expect, inputs = gen_data(axis, dtype, shapes) output = utils.mod_launch(mod, tuple(args), expect=expect) return tuple(inputs), output, expect, compare_tensor(output, expect, rtol=5e-03, equal_nan=True) def gen_data(axis, dtype, shapes): inputs = [] support_list = {"float16": np.float16, "float32": np.float32, "int32": np.int32} for i in range(len(shapes)): shape = shapes[i] input = random_gaussian(shape, miu=1, sigma=0.1).astype(support_list[dtype.lower()]) inputs.append(input) expect = np.concatenate(inputs, axis=axis) output_shape = shapes[0][:] if len(shapes) > 1: for i in range(1, len(shapes)): output_shape[axis] += shapes[i][axis] output = np.full(output_shape, np.nan, dtype) args = inputs args.append(output) return args, expect, inputs