# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from akg.utils import kernel_exec as utils from test_op import cholesky def cholesky_run(shape, dtype, attrs): if 'tuning' in attrs.keys(): t = attrs.get("tuning", False) kernel_name = attrs.get("kernel_name", False) mod = utils.op_build(cholesky.cholesky, [shape], [dtype], kernel_name=kernel_name, attrs=attrs, tuning=t) if t: exp_output, inputs, output = gen_data(dtype, shape) return mod, exp_output, (inputs, output) else: return mod else: # op_attrs=[shape, dtype] mod = utils.op_build(cholesky.cholesky, [shape], [dtype], kernel_name='cholesky', attrs=attrs) exp_output, inputs, output = gen_data(dtype, shape) # result_tvm acu_output = utils.mod_launch(mod, (inputs, output), expect=exp_output) # 4) compare result TestCase_Result = np.allclose(acu_output, exp_output, rtol=5e-03, equal_nan=True) return inputs, acu_output, exp_output, TestCase_Result def gen_data(dtype, shape): # 1)input data # inputs = random_gaussian(shape, miu=1, sigma=10.0).astype(dtype) dim = shape[0] a = np.random.rand(1, dim) b = np.transpose(a) inputs = b.dot(a) inputs = 0.01 * np.identity(dim) + inputs # 2) except :Result_Numpy # exp_output = np.clip(inputs, min_val, max_val) exp_output = np.linalg.cholesky(inputs) # 3) # inputs and output to hold the data output = np.full(shape, np.nan, dtype) print("************hhhhhhhhhhhhhhhhhhhhhhhhh*********", shape) return exp_output, inputs, output