# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from tensorio import compare_tensor from akg.utils import kernel_exec as utils from test_op import blas_axby_ad from gen_random import random_gaussian from base import get_rtol_atol def blas_axby_ad_run(shape, dtype, kernel_name, attrs): alpha = 2.0 beta = 3.0 if 'tuning' in attrs.keys(): t = attrs.get("tuning", False) kernel_name = attrs.get("kernel_name", False) mod = utils.op_build_test(blas_axby_ad.blas_axby_ad, [shape], [dtype], [alpha, beta], kernel_name=kernel_name, attrs=attrs, tuning=t) if t: args, expect_dx, expect_dy, head = gen_data(alpha, beta, dtype, shape) return mod, (expect_dx, expect_dy), {"args": args, 'outputs': (1, 2), 'tuning': False} else: return mod else: mod = utils.op_build_test(blas_axby_ad.blas_axby_ad, [shape], [dtype], [alpha, beta], kernel_name=kernel_name, attrs=attrs) args, expect_dx, expect_dy, head = gen_data(alpha, beta, dtype, shape) output_dx, output_dy = utils.mod_launch(mod, args, outputs=(1, 2), expect=(expect_dx, expect_dy)) rtol, atol = get_rtol_atol("blas_axby_ad", dtype) result = compare_tensor(expect_dx, output_dx, rtol=rtol, atol=atol, equal_nan=True) and \ compare_tensor(expect_dy, output_dy, rtol=rtol, atol=atol, equal_nan=True) return (head), (expect_dx, expect_dy), (output_dx, output_dy), result def gen_data(alpha, beta, dtype, shape): support_list = {"float16": np.float16, "float32": np.float32} head = random_gaussian(shape, miu=1, sigma=0.1).astype(support_list[dtype]) expect_dx = np.multiply(head, alpha) expect_dy = np.multiply(head, beta) output_dx = np.full(expect_dx.shape, np.nan, dtype) output_dy = np.full(expect_dy.shape, np.nan, dtype) args = [head, output_dx, output_dy] return args, expect_dx, expect_dy, head