# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from tensorio import compare_tensor from akg.utils import kernel_exec as utils from test_op import bc_test from gen_random import random_gaussian def bc_run(shape1, shape2, shape3, dtype, kernel_name="bc_test", attrs={}, polyhedral=True): input_shape = [shape1, shape2, shape3] input_dtype = [dtype, dtype, dtype] op_attrs = [] if 'tuning' in attrs.keys(): t = attrs.get("tuning", False) kernel_name = attrs.get("kernel_name", False) mod = utils.op_build_test(bc_test.bc_test, input_shape, input_dtype, op_attrs, kernel_name=kernel_name, attrs=attrs, polyhedral=polyhedral, tuning=t) if t: expect, input1, input2, input3, output = gen_data(dtype, shape1, shape2, shape3) return mod, expect, (input1, input2, input3, output) else: return mod else: mod = utils.op_build_test(bc_test.bc_test, input_shape, input_dtype, op_attrs, kernel_name=kernel_name, attrs=attrs, polyhedral=polyhedral) expect, input1, input2, input3, output = gen_data(dtype, shape1, shape2, shape3) output = utils.mod_launch(mod, (input1, input2, input3, output), expect=expect) return (input1, input2, input3), output, expect, compare_tensor(output, expect, rtol=5e-03, equal_nan=True) def gen_data(dtype, shape1, shape2, shape3): input1 = random_gaussian(shape1, miu=1, sigma=0.1) input2 = random_gaussian(shape2, miu=1, sigma=0.1) input3 = random_gaussian(shape3, miu=1, sigma=0.1) if (dtype == "int32"): input1 = input1.astype(np.int32) input2 = input2.astype(np.int32) input3 = input3.astype(np.int32) elif (dtype == "float16"): input1 = input1.astype(np.float16) input2 = input2.astype(np.float16) input3 = input3.astype(np.float16) expect = np.add(input1, input3) + np.subtract(input1, input3) + np.add(input2, input3) + np.add(input1, input2) out_shape = expect.shape output = np.full(out_shape, np.nan, dtype) return expect, input1, input2, input3, output