# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from tensorio import compare_tensor import numpy as np from akg.utils import kernel_exec as utils from akg.ops.nn import avgpool from akg.utils.dsl_create import cal_pad_shapes_by_strategy from gen_random import random_gaussian def benchmark(input, kernel, stride, pad): sh, sw = stride N, C1, H, W, C0 = input.shape KH, KW = kernel [ph_h, ph_t, pw_h, pw_t], [out_size_h, out_size_w] = cal_pad_shapes_by_strategy(input.shape, kernel, stride, pad) out_shape = (N, C1, out_size_h, out_size_w, C0) out = np.zeros(out_shape) inputpad = np.zeros((N, C1, H + ph_h + ph_t, W + pw_h + pw_t, C0)) inputpad[:, :, ph_h:ph_h + H, pw_h:pw_h + W, :] = input for i in range(out_size_h): for j in range(out_size_w): out[:, :, i, j, :] = np.mean(inputpad[:, :, i * sh:i * sh + KH, j * sw:j * sw + KW, :], axis=(2, 3)) return out def avgpool_run(shape, kernel, stride, strategy, dtype, attrs): if 'tuning' in attrs.keys(): t = attrs.get("tuning", False) kernel_name = attrs.get("kernel_name", False) mod = utils.op_build_test(avgpool.avgpool, [shape], [dtype], op_attrs=[kernel, stride, strategy], kernel_name=kernel_name, attrs=attrs, tuning=t) if t: expect, input, output = gen_data(dtype, kernel, shape, strategy, stride) return mod, expect, (input, output) else: return mod else: mod = utils.op_build_test(avgpool.avgpool, [shape], [dtype], op_attrs=[kernel, stride, strategy], kernel_name='avgpool', attrs=attrs) expect, input, output = gen_data(dtype, kernel, shape, strategy, stride) output = utils.mod_launch(mod, [input, output], expect=expect) return input, output, expect, compare_tensor(output, expect, rtol=5e-03, atol=5e-03, equal_nan=True) def gen_data(dtype, kernel, shape, strategy, stride): support_list = {"float16": np.float16, "float32": np.float32} input = random_gaussian(shape, miu=1, sigma=0.1).astype(support_list[dtype]) expect = benchmark(input, kernel, stride, strategy) out_shape = expect.shape output = np.full(out_shape, 0, dtype) return expect, input, output