# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from tensorio import compare_tensor from akg.utils import kernel_exec as utils from test_op import assign from gen_random import random_gaussian def assign_run(ref_shape, val_shape, dtype, kernel_name, attrs, cce_path="./"): if 'tuning' in attrs.keys(): t = attrs.get("tuning", False) kernel_name = attrs.get("kernel_name", False) mod = utils.op_build_test(assign.assign, [ref_shape, val_shape], [dtype, dtype], kernel_name=kernel_name, attrs=attrs, tuning=t) if t: ref, val, expect = gen_data(dtype, ref_shape, val_shape) return mod, expect, (ref, val) else: return mod else: ref, val, expect = gen_data(dtype, ref_shape, val_shape) mod = utils.op_build_test(assign.assign, [ref_shape, val_shape], [dtype, dtype], kernel_name=kernel_name, attrs=attrs) fake_output = np.full(val_shape, np.nan, dtype) result, _ = utils.mod_launch(mod, (ref, val, fake_output), outputs=(0, -1), expect=expect) return (ref, val), result, expect, compare_tensor(result, expect, atol=5e-01, rtol=5e-03, equal_nan=True) def gen_data(dtype, ref_shape, val_shape): if dtype == "float16": ref = random_gaussian(ref_shape, miu=1, sigma=0.1).astype(np.float16) val = random_gaussian(val_shape, miu=1, sigma=0.1).astype(np.float16) elif dtype == "int32": ref = np.random.randint(2, size=ref_shape).astype(np.int32) val = np.random.randint(2, size=val_shape).astype(np.int32) else: ref = random_gaussian(ref_shape, miu=1, sigma=0.1).astype(np.float32) val = random_gaussian(val_shape, miu=1, sigma=0.1).astype(np.float32) expect = val return ref, val, expect