# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from tensorio import compare_tensor from akg.utils import kernel_exec as utils from akg.ops.state import assign_add from gen_random import random_gaussian def assign_add_run(input_shape, value_shape, dtype, attrs): if 'tuning' in attrs.keys(): t = attrs.get("tuning", False) kernel_name = attrs.get("kernel_name", False) mod = utils.op_build_test(assign_add.assign_add, [input_shape, value_shape], [dtype, dtype], kernel_name=kernel_name, attrs=attrs, tuning=t) if t: expect, input, value = gen_data(dtype, input_shape, value_shape) return mod, expect, {"args": (input, value), 'outputs': (0,), 'tuning': False} else: return mod else: mod = utils.op_build_test(assign_add.assign_add, [input_shape, value_shape], [dtype, dtype], kernel_name='assign_add', attrs=attrs) expect, input, value = gen_data(dtype, input_shape, value_shape) result = utils.mod_launch(mod, (input, value), outputs=(0, ), expect=expect) return (value, input), result, expect, compare_tensor(result, expect, atol=5e-01, rtol=5e-03, equal_nan=True) def gen_data(dtype, input_shape, value_shape): support_list = {"float16": np.float16, "float32": np.float32, "int32": np.int32} if not (dtype.lower() in support_list): raise RuntimeError("tile_cce only support %s while dtype is %s" % (",".join(support_list.keys()), dtype)) input = random_gaussian(input_shape, miu=0.1, sigma=0.1) input = input.astype(support_list[dtype]) value = random_gaussian(value_shape, miu=0.22, sigma=0.1) value = value.astype(support_list[dtype]) expect = np.add(input, value) return expect, input, value