# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ acos_grad run define """ import numpy as np from tensorio import compare_tensor from akg.utils import kernel_exec as utils from test_op import acos_grad from gen_random import random_gaussian def acos_grad_run(shape, dtype, attrs): if 'tuning' in attrs.keys(): t = attrs.get("tuning", False) kernel_name = attrs.get("kernel_name", False) mod = utils.op_build_test(acos_grad.acos_grad, [shape, shape], [dtype, dtype], kernel_name=kernel_name, attrs=attrs, tuning=t) if t: expect, grad, inputs, output = gen_data(dtype, shape) return mod, expect, (inputs, grad, output) else: return mod else: mod = utils.op_build_test(acos_grad.acos_grad, [shape, shape], [dtype, dtype], kernel_name='acos_grad', attrs=attrs) expect, grad, inputs, output = gen_data(dtype, shape) output = utils.mod_launch(mod, (inputs, grad, output), expect=expect) # compare result TestCase_Result = compare_tensor(output, expect, rtol=5e-03, atol=1e-04, equal_nan=False) return (inputs, grad), output, expect, TestCase_Result def gen_data(dtype, shape): # Generate data for testing the op inputs = random_gaussian(shape, miu=0, sigma=0.1).astype(dtype) grad = random_gaussian(shape, miu=0, sigma=0.1).astype(dtype) expect = - (1 / np.sqrt(1 - np.square(inputs))) * grad # inputs and output to hold the data output = np.full(expect.shape, np.nan, dtype) return expect, grad, inputs, output