# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """operator dsl function: reduce_all""" import akg.topi import akg.tvm import akg from akg.utils import validation_check as vc_util from akg.utils import format_transform as ft_util from akg.utils import dsl_create as dc @vc_util.check_input_type(akg.tvm.tensor.Tensor, (int, list, tuple, type(None)), (bool, type(None))) def reduce_all(data, axis=None, keepdims=False): """ Computes logical and of the input tensor. Args: data(tvm.tensor.Tensor): Tensor of type Boolean. axis(Union[None, int, list, tuple]): Specifies which axes to reduce, if None, all dimensions of input tensor data will be reduced and the shape of output tensor will be (1,). keepdims(Union[None, bool]): if true, keep the dimensions with length 1. Returns: tvm.tensor.Tensor of same type as input tensor data. """ shape = [x.value for x in data.shape] vc_util.ops_dtype_check(data.dtype, vc_util.DtypeForDavinci.BOOL) vc_util.check_shape(shape) if axis is None and keepdims is False: raise ValueError("keepdims must be True when axis is None!") axis_new = ft_util.refine_reduce_axis(data, axis) xx1 = akg.tvm.compute(shape, lambda *indice: data(*indice).astype("float16"), name='xx1') xx = (-xx1 + dc.one_const("float16")) yy = akg.topi.sum(xx, axis=axis_new, keepdims=keepdims) o_shape = list(yy.shape) zz = akg.tvm.compute(o_shape, lambda *indice: yy(*indice).astype("bool"), name='zz') y1 = akg.tvm.compute(o_shape, lambda *indice: akg.tvm.expr.Select(zz(*indice), dc.zero_const("float16"), dc.one_const("float16")), name="y1") y = akg.tvm.compute(o_shape, lambda *indice: y1(*indice).astype("bool"), name='y') return y