# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """operator dsl function: dense""" import akg.tvm def dense(data, w, bias_data=None, bias=False): """ Computes data * w if bias is False, else data * W + bias_data if bias is True. Args: data(akg.tvm.Tensor): Should be a 2D tensor of type float16 with shape(batch, in_dim). w(akg.tvm.Tensor): Should be a 2D tensor of same type as data with shape(out_dim, in_dim). bias_data(None, akg.tvm.Tensor): Could be None(if bias is False) or a 1D akg.tvm.Tensor of same type as data with shape(out_dim,). bias(bool): Specifies whether a bias vector will be used or not. Returns: 2D akg.tvm.Tensor of same type as data with shape(batch, out_dim). """ check_list = ["float16"] dtype = data.dtype if not dtype in check_list: raise TypeError("tile_cce only support %s while dtype is %s" % (",".join(check_list), dtype)) d_shape = [x.value for x in data.shape] batch = d_shape[0] in_dim = d_shape[1] w_shape = [x.value for x in w.shape] if bias: out_dim = [x.value for x in bias_data.shape][0] else: out_dim = w_shape[0] k = akg.tvm.reduce_axis((0, in_dim), name='k') res = akg.tvm.compute((batch, out_dim), lambda i, j: akg.tvm.sum(data[i, k] * w[j, k], axis=k), name='M') if bias: res = akg.tvm.compute((batch, out_dim), lambda i, j: res[i, j] + bias_data[j]) return res