# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """operator dsl function:batch_reindex_layer""" import akg.tvm from akg.utils import validation_check as vc_util def batch_reindex_layer(input_data, permut): """ Input data is reindexed along shape[0]. Shape[0] is regarded as "index" and to be "reindexed". Args: input_data: Tensor. permut: Array list. Used to select input tensor from shape[1:]. Returns: Tensor, has the same type as input_data, and shape[0] is changed by permut. """ # check dtype dtype = input_data.dtype check_list = ["float16", "float32", "int32", "int8", "uint8"] if not dtype.lower() in check_list: raise RuntimeError("batch_reindex_layer only support %s while dtype is %s" % (",".join(check_list), dtype)) # check shape shape = input_data.shape vc_util.check_shape(shape) # check permut for index in permut: if index < 0 or index >= int(shape[0]): raise RuntimeError("index in list should be greater than 0 and less than shape[0].") oshape = [len(permut),] + input_data.shape[1:] def map_index(*index): idx = index[0] in_n = permut[0] for i in range(len(permut))[1:]: in_n = akg.tvm.expr.Select((idx == i), permut[i], in_n) return [in_n,] + list(index[1:]) output_data = akg.tvm.compute(oshape, lambda *i: input_data(*map_index(*i)), name='output') return output_data