# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from tensorio import compare_tensor from akg.utils import kernel_exec as utils from test_op import square_difference from gen_random import random_gaussian def square_difference_run(shape1, shape2, dtype, kernel_name, attrs, cce_path="./"): if 'tuning' in attrs.keys(): t = attrs.get("tuning", False) kernel_name = attrs.get("kernel_name", False) mod = utils.op_build_test(square_difference.square_difference, input_shapes=[shape1, shape2], input_types=[dtype, dtype], kernel_name=kernel_name, attrs=attrs, tuning=t) if t: expect, input1, input2, output = gen_data(dtype, shape1, shape2) return mod, expect, (input1, input2, output) else: return mod else: mod = utils.op_build_test(square_difference.square_difference, input_shapes=[shape1, shape2], input_types=[dtype, dtype], kernel_name=kernel_name, attrs=attrs) expect, input1, input2, output = gen_data(dtype, shape1, shape2) source_code = mod.imported_modules[0].get_source() utils.create_code(kernel_name, cce_path, source_code) output = utils.mod_launch(mod, (input1, input2, output), expect=expect) return (input1, input2), output, expect, compare_tensor(output, expect, rtol=5e-03, equal_nan=True) def gen_data(dtype, shape1, shape2): support_list = {"float16": np.float16, "float32": np.float32} input1 = random_gaussian(shape1, miu=1, sigma=0.1).astype(support_list[dtype]) input2 = random_gaussian(shape2, miu=1, sigma=0.1).astype(support_list[dtype]) expect = np.square(np.subtract(input1, input2)) out_shape = expect.shape output = np.full(out_shape, np.nan, dtype) return expect, input1, input2, output