# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import itertools from akg.utils import kernel_exec as utils from akg.ops.nn import maxpool_grad from akg.utils.dsl_create import cal_pad_shapes_by_strategy from tensorio import compare_tensor from base import get_rtol_atol from gen_random import random_gaussian def maxpool_benchmark(input, kernel, stride, pad): sh, sw = stride [ph_h, ph_t, pw_h, pw_t], [out_size_h, out_size_w] = \ cal_pad_shapes_by_strategy(input.shape, kernel, stride, pad) N, C1, H, W, C0 = input.shape KH, KW = kernel out_shape = (N, C1, out_size_h, out_size_w, C0) out = np.zeros(out_shape) inputpad = np.full((N, C1, H + ph_h + ph_t, W + pw_h + pw_t, C0), np.finfo(input.dtype).min, dtype=input.dtype) inputpad[:, :, ph_h: ph_h + H, pw_h: pw_h + W, :] = input for i in range(out_size_h): for j in range(out_size_w): out[:, :, i, j, :] = np.max(inputpad[:, :, i * sh:i * sh + KH, j * sw:j * sw + KW, :], axis=(2, 3)) return out # behaviour # - 0: return dy only for the first maximum within one kernel # - 1: return dy for all maximums within one kernel def benchmark(x, y, dy, kernel, stride, pad, behaviour=0): kernel_h, kernel_w = kernel stride_h, stride_w = stride [pad_h_head, pad_h_tail, pad_w_head, pad_w_tail], _ = cal_pad_shapes_by_strategy(x.shape, kernel, stride, pad) N, C1, H, W, C0 = x.shape pad_shape = (N, C1, H + pad_h_tail + pad_h_head, W + pad_w_tail + pad_w_head, C0) padx = np.full(pad_shape, 0, dtype=x.dtype) padx[:, :, pad_h_head:(pad_h_head + H), pad_w_head:(pad_w_head + W), :] = x dx = np.zeros(padx.shape, dtype=x.dtype) _, _, yH, yW, _ = y.shape if behaviour == 0: for n in range(N): for c1 in range(C1): for yh in range(yH): for yw in range(yW): for c0 in range(C0): out_maxpool1 = y[n, c1, yh, yw, c0] head_maxpool1 = dy[n, c1, yh, yw, c0] for kh,kw in itertools.product(range(kernel_h), range(kernel_w)): if padx[n, c1, yh*stride_h + kh, yw*stride_w + kw, c0] == out_maxpool1: dx[n, c1, yh*stride_h + kh, yw*stride_w + kw, c0] += head_maxpool1 break elif behaviour == 1: for n in range(N): for c1 in range(C1): for yh in range(yH): for yw in range(yW): for c0 in range(C0): out_maxpool1 = y[n, c1, yh, yw, c0] head_maxpool1 = dy[n, c1, yh, yw, c0] for kh in range(kernel_h): for kw in range(kernel_w): if padx[n, c1, yh*stride_h + kh, yw*stride_w + kw, c0] == out_maxpool1: dx[n, c1, yh*stride_h + kh, yw*stride_w + kw, c0] += head_maxpool1 return dx[:, :, pad_h_head:(pad_h_head + H), pad_w_head:(pad_w_head + W), :] def maxpool_grad_run(shape, kernel, stride, pad, dtype, attrs): # Create op _, [yh, yw] = cal_pad_shapes_by_strategy(shape, kernel, stride, pad) y_shape = (shape[0], shape[1], yh, yw, shape[4]) if 'tuning' in attrs.keys(): t = attrs.get("tuning", False) kernel_name = attrs.get("kernel_name", False) mod = utils.op_build_test(maxpool_grad.maxpool_grad, [shape, y_shape, y_shape], [dtype, dtype, dtype], op_attrs=[kernel, stride, pad], kernel_name=kernel_name, attrs=attrs, dump_code=True, tuning=t) if t: dy, expect, output, x, y = \ gen_data(dtype, kernel, pad, shape, stride, y_shape) return mod, expect, (x, y, dy, output) else: return mod else: mod = utils.op_build_test(maxpool_grad.maxpool_grad, [shape, y_shape, y_shape], [dtype, dtype, dtype], op_attrs=[kernel, stride, pad], kernel_name='maxpool_grad', attrs=attrs, dump_code=True) dy, expect, output, x, y = \ gen_data(dtype, kernel, pad, shape, stride, y_shape) output = utils.mod_launch(mod, (x, y, dy, output), expect=expect) rtol, atol = get_rtol_atol("maxpool_grad", dtype) return (x, y, dy), output, expect, \ compare_tensor(output, expect, rtol=rtol, atol=atol, equal_nan=True) def gen_data(dtype, kernel, pad, shape, stride, y_shape): # Generate data for testing the op x = random_gaussian(shape, miu=1, sigma=0.1).astype(dtype) y = maxpool_benchmark(x, kernel, stride, pad) y = y.astype(dtype) assert y.shape == y_shape, "y shape wrong" dy = random_gaussian(y_shape, miu=1, sigma=0.1).astype(dtype) expect = benchmark(x, y, dy, kernel, stride, pad) output_shape = shape # output tensor must be initialized to zero output = np.full(output_shape, 0, dtype) return dy, expect, output, x, y