# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from tensorio import compare_tensor from akg.utils import kernel_exec as utils from test_op import l1_loss_grad from gen_random import random_gaussian def l1_loss_grad_run(shape, dtype, kernel_name="l1_loss_grad", attrs=None): if not utils.product_is_mini(): attrs['enable_align_fix'] = True attrs['enable_multicore'] = True if 'tuning' in attrs.keys(): t = attrs.get("tuning", False) kernel_name = attrs.get("kernel_name", False) mod = utils.op_build_test(l1_loss_grad.l1_loss_grad, [shape, shape, shape], [dtype, dtype, dtype], kernel_name=kernel_name, attrs=attrs, dump_code=True, tuning=t) if t: dloss, expect, output, prediction, target = gen_data(dtype, shape) return mod, expect, (dloss, prediction, target, output) else: return mod else: mod = utils.op_build_test(l1_loss_grad.l1_loss_grad, [shape, shape, shape], [dtype, dtype, dtype], kernel_name=kernel_name, attrs=attrs, dump_code=True) dloss, expect, output, prediction, target = gen_data(dtype, shape) output = utils.mod_launch(mod, (dloss, prediction, target, output), expect=expect) return (dloss, prediction, target), output, expect, compare_tensor(output, expect, rtol=0.001, atol=0.001) def gen_data(dtype, shape): target = random_gaussian(shape, miu=0, sigma=5).astype(dtype) diff = random_gaussian(shape, miu=0, sigma=1).astype(dtype) prediction = np.add(target, diff) dloss = random_gaussian(shape, miu=0, sigma=2).astype(dtype) # sigma is a constant parameter sigma = 1.0 diff = np.subtract(prediction, target) second_branch = np.where(0 <= diff, 1, -1) expect = np.multiply(second_branch, dloss) expect = expect.astype(np.float16) output = np.full(expect.shape, np.nan, dtype) return dloss, expect, output, prediction, target