# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from tensorio import compare_tensor from akg.utils import kernel_exec as utils from test_op.prob_program.distribution import bernoulli as akg_bernoulli from scipy.stats import bernoulli, uniform from numpy.random import seed import sys #np.set_printoptions(threshold=sys.maxsize) def log_prob_op(x, probs): return akg_bernoulli.bernoulli(probs).log_prob(x) def log_prob_run(shape, dtype, kernelname="", attrs = None): expect, x, probs, output = gen_data(dtype, shape) mod = utils.op_build_test(log_prob_op, [x.shape, probs.shape], [dtype, dtype], kernel_name=kernelname, op_attrs=[], attrs=None, log_cce=True, dump_code=True, polyhedral=True) output = utils.mod_launch(mod, [x, probs, output], expect=expect) return (x, probs), output, expect, compare_tensor(output, expect, rtol=1e-03, atol=1e-03, equal_nan=True) def gen_data(dtype, shape): support_list = {"float16": np.float16, "float32": np.float32} seed(0) m, k = shape x = bernoulli.rvs(0.5, size=(m, k)).astype(support_list[dtype]) eps = 1e-3 # generate probabilities in the range [eps, 1 - eps], to avoid mismatch between np.inf and computed # inf = -65500.0, due to taking log probs = uniform(eps, 1.0 - 2.0 * eps).rvs(size=(m, k)).astype(support_list[dtype]) expect = bernoulli.logpmf(x, probs) output = np.full((m, k), 0.0, dtype) return expect, x, probs, output