# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from tensorio import compare_tensor import numpy as np from akg.utils import kernel_exec as utils from . import avgpool_run from . import avgpool_grad_run from test_op.avgpool_ad import avgpool_ad from test_op.avgpool_ad import avgpool_ad_no_custom_diff_manual_schedule from gen_random import random_gaussian def avgpool_ad_run(shape, kernel, stride, pad, dtype, polyhedral=False, attrs=None): support_list = {"float16": np.float16, "float32": np.float32} if attrs is None: attrs = {'loop_partition_unroll': True} else: attrs['loop_partition_unroll'] = True kernel_name = 'avgpool_ad' if polyhedral: avgpool = avgpool_ad else: kernel_name = kernel_name + "_manual_schedule" avgpool = avgpool_ad_no_custom_diff_manual_schedule if 'tuning' in attrs.keys(): t = attrs.get("tuning", False) kernel_name = attrs.get("kernel_name", False) input = random_gaussian(shape, miu=1, sigma=0.1).astype(support_list[dtype]) y = avgpool_run.benchmark(input, kernel, stride, pad) mod = utils.op_build_test(avgpool, [y.shape, shape], [dtype, dtype], op_attrs=[kernel, stride, pad], kernel_name=kernel_name, attrs=attrs, log_cce=True, dump_code=True, tuning=t) if t: expect, head, output = gen_data(dtype, input, kernel, pad, stride, support_list, y) return mod, expect, (head, input, output) else: return mod else: input = random_gaussian(shape, miu=1, sigma=0.1).astype(support_list[dtype]) y = avgpool_run.benchmark(input, kernel, stride, pad) mod = utils.op_build_test(avgpool, [y.shape, shape], [dtype, dtype], op_attrs=[kernel, stride, pad], kernel_name=kernel_name, attrs=attrs, log_cce=True, dump_code=True) expect, head, output = gen_data(dtype, input, kernel, pad, stride, support_list, y) output = utils.mod_launch(mod, [head, input, output], expect=expect) return [head, input], output, expect, compare_tensor(output, expect, rtol=5e-03, atol=5e-03, equal_nan=True) def gen_data(dtype, input, kernel, pad, stride, support_list, y): head = random_gaussian(y.shape, miu=1, sigma=0.1).astype(support_list[dtype]) expect = avgpool_grad_run.benchmark(dtype, input, y, head, kernel, stride, pad) out_shape = expect.shape output = np.full(out_shape, 0, dtype) return expect, head, output