Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MindSpore
akg
提交
4200d597
A
akg
项目概览
MindSpore
/
akg
通知
58
Star
7
Fork
7
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
A
akg
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4200d597
编写于
7月 06, 2020
作者:
M
mindspore-ci-bot
提交者:
Gitee
7月 06, 2020
浏览文件
操作
浏览文件
下载
差异文件
!14 add composite benchmark in akg
Merge pull request !14 from dylangeng/benchmark
上级
34d89438
0d495b6a
变更
11
显示空白变更内容
内联
并排
Showing
11 changed file
with
1558 addition
and
0 deletion
+1558
-0
tests/perf_benchmark/benchmark/json_benchmark/case1.json
tests/perf_benchmark/benchmark/json_benchmark/case1.json
+707
-0
tests/perf_benchmark/benchmark/json_benchmark/case10.json
tests/perf_benchmark/benchmark/json_benchmark/case10.json
+1
-0
tests/perf_benchmark/benchmark/json_benchmark/case2.json
tests/perf_benchmark/benchmark/json_benchmark/case2.json
+320
-0
tests/perf_benchmark/benchmark/json_benchmark/case3.json
tests/perf_benchmark/benchmark/json_benchmark/case3.json
+500
-0
tests/perf_benchmark/benchmark/json_benchmark/case4_logsoftmax.json
..._benchmark/benchmark/json_benchmark/case4_logsoftmax.json
+1
-0
tests/perf_benchmark/benchmark/json_benchmark/case5_reciprocal.json
..._benchmark/benchmark/json_benchmark/case5_reciprocal.json
+1
-0
tests/perf_benchmark/benchmark/json_benchmark/case6_mul_mul.json
...erf_benchmark/benchmark/json_benchmark/case6_mul_mul.json
+1
-0
tests/perf_benchmark/benchmark/json_benchmark/case7_mul_mul.json
...erf_benchmark/benchmark/json_benchmark/case7_mul_mul.json
+1
-0
tests/perf_benchmark/benchmark/json_benchmark/case8_cast_cast.json
...f_benchmark/benchmark/json_benchmark/case8_cast_cast.json
+1
-0
tests/perf_benchmark/benchmark/json_benchmark/case9.json
tests/perf_benchmark/benchmark/json_benchmark/case9.json
+1
-0
tests/perf_benchmark/benchmark/network_benchmark_op.py
tests/perf_benchmark/benchmark/network_benchmark_op.py
+24
-0
未找到文件。
tests/perf_benchmark/benchmark/json_benchmark/case1.json
0 → 100644
浏览文件 @
4200d597
{
"composite"
:
true
,
"input_desc"
:
[
[
{
"data_type"
:
"float32"
,
"shape"
:
[
32
,
16
,
56
,
56
,
16
],
"tensor_name"
:
"input_14"
}
],
[
{
"data_type"
:
"float32"
,
"shape"
:
[
1
,
16
,
1
,
1
,
16
],
"tensor_name"
:
"input_0"
}
],
[
{
"data_type"
:
"float32"
,
"shape"
:
[
1
,
16
,
1
,
1
,
16
],
"tensor_name"
:
"input_3"
}
],
[
{
"data_type"
:
"float32"
,
"shape"
:
[
1
,
16
,
1
,
1
,
16
],
"tensor_name"
:
"input_9"
}
],
[
{
"data_type"
:
"float32"
,
"shape"
:
[
1
,
16
,
1
,
1
,
16
],
"tensor_name"
:
"input_12"
}
]
],
"op"
:
"Fused_Poly_Schedule_Opt_001"
,
"op_desc"
:
[
{
"attr"
:
[
{
"name"
:
"x_shape"
,
"value"
:
[
256
]
},
{
"name"
:
"y_shape"
,
"value"
:
[
1
]
},
{
"name"
:
"data_format"
,
"value"
:
[
"NC1HWC0"
,
"NC1HWC0"
]
}
],
"impl_path"
:
""
,
"input_desc"
:
[
[
{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:
[
1
,
16
,
1
,
1
,
16
],
"tensor_name"
:
"input_0"
}
],
[
{
"data_type"
:
"float32"
,
"name"
:
"y"
,
"shape"
:
[
1
],
"tensor_name"
:
"input_1"
,
"value"
:
9.964923265215475e-06
}
]
],
"name"
:
"Mul"
,
"output_desc"
:
[
{
"data_type"
:
"float32"
,
"name"
:
"output"
,
"shape"
:
[
1
,
16
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_0"
}
]
},
{
"attr"
:
[
{
"name"
:
"x_shape"
,
"value"
:
[
256
]
},
{
"name"
:
"y_shape"
,
"value"
:
[
256
]
},
{
"name"
:
"data_format"
,
"value"
:
[
"NC1HWC0"
,
"NC1HWC0"
]
}
],
"impl_path"
:
""
,
"input_desc"
:
[
[
{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:
[
1
,
16
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_0"
}
],
[
{
"data_type"
:
"float32"
,
"name"
:
"y"
,
"shape"
:
[
1
,
16
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_0"
}
]
],
"name"
:
"Mul"
,
"output_desc"
:
[
{
"data_type"
:
"float32"
,
"name"
:
"output"
,
"shape"
:
[
1
,
16
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_1"
}
]
},
{
"attr"
:
[
{
"name"
:
"x_shape"
,
"value"
:
[
256
]
},
{
"name"
:
"y_shape"
,
"value"
:
[
1
]
},
{
"name"
:
"data_format"
,
"value"
:
[
"NC1HWC0"
,
"NC1HWC0"
]
}
],
"impl_path"
:
""
,
"input_desc"
:
[
[
{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:
[
1
,
16
,
1
,
1
,
16
],
"tensor_name"
:
"input_3"
}
],
[
{
"data_type"
:
"float32"
,
"name"
:
"y"
,
"shape"
:
[
1
],
"tensor_name"
:
"input_1"
,
"value"
:
9.964923265215475e-06
}
]
],
"name"
:
"Mul"
,
"output_desc"
:
[
{
"data_type"
:
"float32"
,
"name"
:
"output"
,
"shape"
:
[
1
,
16
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_2"
}
]
},
{
"attr"
:
null
,
"impl_path"
:
""
,
"input_desc"
:
[
[
{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:
[
1
,
16
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_2"
}
],
[
{
"data_type"
:
"float32"
,
"name"
:
"y"
,
"shape"
:
[
1
,
16
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_1"
}
]
],
"name"
:
"Sub"
,
"output_desc"
:
[
{
"data_type"
:
"float32"
,
"name"
:
"output"
,
"shape"
:
[
1
,
16
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_3"
}
]
},
{
"attr"
:
null
,
"impl_path"
:
""
,
"input_desc"
:
[
[
{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:
[
1
,
16
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_3"
}
],
[
{
"data_type"
:
"float32"
,
"name"
:
"y"
,
"shape"
:
[
1
],
"tensor_name"
:
"input_7"
,
"value"
:
9.999999747378752e-06
}
]
],
"name"
:
"TensorAdd"
,
"output_desc"
:
[
{
"data_type"
:
"float32"
,
"name"
:
"output"
,
"shape"
:
[
1
,
16
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_4"
}
]
},
{
"attr"
:
null
,
"impl_path"
:
""
,
"input_desc"
:
[
[
{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:
[
1
,
16
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_4"
}
]
],
"name"
:
"Sqrt"
,
"output_desc"
:
[
{
"data_type"
:
"float32"
,
"name"
:
"output"
,
"shape"
:
[
1
,
16
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_5"
}
]
},
{
"attr"
:
null
,
"impl_path"
:
""
,
"input_desc"
:
[
[
{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:
[
1
,
16
,
1
,
1
,
16
],
"tensor_name"
:
"input_9"
}
],
[
{
"data_type"
:
"float32"
,
"name"
:
"y"
,
"shape"
:
[
1
,
16
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_5"
}
]
],
"name"
:
"RealDiv"
,
"output_desc"
:
[
{
"data_type"
:
"float32"
,
"name"
:
"output"
,
"shape"
:
[
1
,
16
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_6"
}
]
},
{
"attr"
:
[
{
"name"
:
"x_shape"
,
"value"
:
[
256
]
},
{
"name"
:
"y_shape"
,
"value"
:
[
256
]
},
{
"name"
:
"data_format"
,
"value"
:
[
"NC1HWC0"
,
"NC1HWC0"
]
}
],
"impl_path"
:
""
,
"input_desc"
:
[
[
{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:
[
1
,
16
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_6"
}
],
[
{
"data_type"
:
"float32"
,
"name"
:
"y"
,
"shape"
:
[
1
,
16
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_0"
}
]
],
"name"
:
"Mul"
,
"output_desc"
:
[
{
"data_type"
:
"float32"
,
"name"
:
"output"
,
"shape"
:
[
1
,
16
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_7"
}
]
},
{
"attr"
:
null
,
"impl_path"
:
""
,
"input_desc"
:
[
[
{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:
[
1
,
16
,
1
,
1
,
16
],
"tensor_name"
:
"input_12"
}
],
[
{
"data_type"
:
"float32"
,
"name"
:
"y"
,
"shape"
:
[
1
,
16
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_7"
}
]
],
"name"
:
"Sub"
,
"output_desc"
:
[
{
"data_type"
:
"float32"
,
"name"
:
"output"
,
"shape"
:
[
1
,
16
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_8"
}
]
},
{
"attr"
:
[
{
"name"
:
"x_shape"
,
"value"
:
[
256
]
},
{
"name"
:
"y_shape"
,
"value"
:
[
32
,
256
,
56
,
56
]
},
{
"name"
:
"data_format"
,
"value"
:
[
"NC1HWC0"
,
"NC1HWC0"
]
}
],
"impl_path"
:
""
,
"input_desc"
:
[
[
{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:
[
1
,
16
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_6"
}
],
[
{
"data_type"
:
"float32"
,
"name"
:
"y"
,
"shape"
:
[
32
,
16
,
56
,
56
,
16
],
"tensor_name"
:
"input_14"
}
]
],
"name"
:
"Mul"
,
"output_desc"
:
[
{
"data_type"
:
"float32"
,
"name"
:
"output"
,
"shape"
:
[
32
,
16
,
56
,
56
,
16
],
"tensor_name"
:
"output_0_9"
}
]
},
{
"attr"
:
null
,
"impl_path"
:
""
,
"input_desc"
:
[
[
{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:
[
32
,
16
,
56
,
56
,
16
],
"tensor_name"
:
"output_0_9"
}
],
[
{
"data_type"
:
"float32"
,
"name"
:
"y"
,
"shape"
:
[
1
,
16
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_8"
}
]
],
"name"
:
"TensorAdd"
,
"output_desc"
:
[
{
"data_type"
:
"float32"
,
"name"
:
"output"
,
"shape"
:
[
32
,
16
,
56
,
56
,
16
],
"tensor_name"
:
"output_0_10"
}
]
}
],
"output_desc"
:
[
{
"data_type"
:
"float32"
,
"shape"
:
[
32
,
16
,
56
,
56
,
16
],
"tensor_name"
:
"output_0_10"
}
],
"platform"
:
"AKG"
,
"process"
:
"aicore"
}
\ No newline at end of file
tests/perf_benchmark/benchmark/json_benchmark/case10.json
0 → 100644
浏览文件 @
4200d597
{
"composite"
:
true
,
"composite_graph"
:
"10313"
,
"input_desc"
:[[{
"data_type"
:
"float16"
,
"shape"
:[
16
,
1
,
1
,
512
],
"tensor_name"
:
"input_2"
}],[{
"data_type"
:
"float16"
,
"shape"
:[
16
,
16
,
512
,
512
],
"tensor_name"
:
"input_1"
}]],
"op"
:
"Fused_Mul_Mul_TensorAdd__4400644352246048056"
,
"op_desc"
:[{
"attr"
:[{
"name"
:
"x_shape"
,
"value"
:[
1
]},{
"name"
:
"y_shape"
,
"value"
:[
16
,
16
,
512
,
512
]},{
"name"
:
"data_format"
,
"value"
:[
"DefaultFormat"
,
"DefaultFormat"
]}],
"impl_path"
:
""
,
"input_desc"
:[[{
"data_type"
:
"float16"
,
"name"
:
"x"
,
"shape"
:[
1
],
"tensor_name"
:
"input_0"
,
"value"
:
0.125
}],[{
"data_type"
:
"float16"
,
"name"
:
"y"
,
"shape"
:[
16
,
16
,
512
,
512
],
"tensor_name"
:
"input_1"
}]],
"name"
:
"Mul"
,
"output_desc"
:[{
"data_type"
:
"float16"
,
"name"
:
"output"
,
"shape"
:[
16
,
16
,
512
,
512
],
"tensor_name"
:
"output_0_0"
}]},{
"attr"
:[{
"name"
:
"x_shape"
,
"value"
:[
16
,
1
,
1
,
512
]},{
"name"
:
"y_shape"
,
"value"
:[
1
]},{
"name"
:
"data_format"
,
"value"
:[
"DefaultFormat"
,
"DefaultFormat"
]}],
"impl_path"
:
""
,
"input_desc"
:[[{
"data_type"
:
"float16"
,
"name"
:
"x"
,
"shape"
:[
16
,
1
,
1
,
512
],
"tensor_name"
:
"input_2"
}],[{
"data_type"
:
"float16"
,
"name"
:
"y"
,
"shape"
:[
1
],
"tensor_name"
:
"input_3"
,
"value"
:
-10000.0
}]],
"name"
:
"Mul"
,
"output_desc"
:[{
"data_type"
:
"float16"
,
"name"
:
"output"
,
"shape"
:[
16
,
1
,
1
,
512
],
"tensor_name"
:
"output_0_1"
}]},{
"attr"
:
null
,
"impl_path"
:
""
,
"input_desc"
:[[{
"data_type"
:
"float16"
,
"name"
:
"x"
,
"shape"
:[
16
,
1
,
1
,
512
],
"tensor_name"
:
"output_0_1"
}],[{
"data_type"
:
"float16"
,
"name"
:
"y"
,
"shape"
:[
16
,
16
,
512
,
512
],
"tensor_name"
:
"output_0_0"
}]],
"name"
:
"TensorAdd"
,
"output_desc"
:[{
"data_type"
:
"float16"
,
"name"
:
"output"
,
"shape"
:[
16
,
16
,
512
,
512
],
"tensor_name"
:
"output_0_2"
}]}],
"output_desc"
:[{
"data_type"
:
"float16"
,
"shape"
:[
16
,
1
,
1
,
512
],
"tensor_name"
:
"output_0_1"
},{
"data_type"
:
"float16"
,
"shape"
:[
16
,
16
,
512
,
512
],
"tensor_name"
:
"output_0_2"
}],
"platform"
:
"AKG"
,
"process"
:
"aicore"
}
tests/perf_benchmark/benchmark/json_benchmark/case2.json
0 → 100644
浏览文件 @
4200d597
{
"composite"
:
true
,
"input_desc"
:
[
[{
"data_type"
:
"float16"
,
"shape"
:
[
32
,
16
,
56
,
56
,
16
],
"tensor_name"
:
"input_0"
}],
[{
"data_type"
:
"float16"
,
"shape"
:
[
32
,
16
,
56
,
56
,
16
],
"tensor_name"
:
"input_9"
}],
[{
"data_type"
:
"float32"
,
"shape"
:
[
1
,
16
,
1
,
1
,
16
],
"tensor_name"
:
"input_7"
}],
[{
"data_type"
:
"float32"
,
"shape"
:
[
1
,
16
,
1
,
1
,
16
],
"tensor_name"
:
"input_2"
}]
],
"op"
:
"Fused_Poly_Schedule_Opt_002"
,
"op_desc"
:
[{
"attr"
:
[{
"name"
:
"dst_type"
,
"value"
:
"float32"
}],
"impl_path"
:
""
,
"input_desc"
:
[
[{
"data_type"
:
"float16"
,
"name"
:
"x"
,
"shape"
:
[
32
,
16
,
56
,
56
,
16
],
"tensor_name"
:
"input_0"
}]
],
"name"
:
"Cast"
,
"output_desc"
:
[{
"data_type"
:
"float32"
,
"name"
:
"output"
,
"shape"
:
[
32
,
16
,
56
,
56
,
16
],
"tensor_name"
:
"output_0_0"
}]
},
{
"attr"
:
[{
"name"
:
"axis"
,
"value"
:
[
0
,
2
,
3
]
},
{
"name"
:
"keep_dims"
,
"value"
:
true
}],
"impl_path"
:
""
,
"input_desc"
:
[
[{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:
[
32
,
16
,
56
,
56
,
16
],
"tensor_name"
:
"output_0_0"
}]
],
"name"
:
"ReduceSum"
,
"output_desc"
:
[{
"data_type"
:
"float32"
,
"name"
:
"output"
,
"shape"
:
[
1
,
16
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_1"
}]
},
{
"attr"
:
null
,
"impl_path"
:
""
,
"input_desc"
:
[
[{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:
[
1
,
16
,
1
,
1
,
16
],
"tensor_name"
:
"input_2"
}],
[{
"data_type"
:
"float32"
,
"name"
:
"y"
,
"shape"
:
[
1
],
"tensor_name"
:
"input_3"
,
"value"
:
9.999999747378752e-05
}]
],
"name"
:
"TensorAdd"
,
"output_desc"
:
[{
"data_type"
:
"float32"
,
"name"
:
"output"
,
"shape"
:
[
1
,
16
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_2"
}]
},
{
"attr"
:
null
,
"impl_path"
:
""
,
"input_desc"
:
[
[{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:
[
1
,
16
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_2"
}]
],
"name"
:
"Sqrt"
,
"output_desc"
:
[{
"data_type"
:
"float32"
,
"name"
:
"output"
,
"shape"
:
[
1
,
16
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_3"
}]
},
{
"attr"
:
null
,
"impl_path"
:
""
,
"input_desc"
:
[
[{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:
[
1
],
"tensor_name"
:
"input_5"
,
"value"
:
1.0
}],
[{
"data_type"
:
"float32"
,
"name"
:
"y"
,
"shape"
:
[
1
,
16
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_3"
}]
],
"name"
:
"RealDiv"
,
"output_desc"
:
[{
"data_type"
:
"float32"
,
"name"
:
"output"
,
"shape"
:
[
1
,
16
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_4"
}]
},
{
"attr"
:
[{
"name"
:
"x_shape"
,
"value"
:
[
256
]
},
{
"name"
:
"y_shape"
,
"value"
:
[]
},
{
"name"
:
"data_format"
,
"value"
:
[
"NC1HWC0"
,
"NC1HWC0"
]
}],
"impl_path"
:
""
,
"input_desc"
:
[
[{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:
[
1
,
16
,
1
,
1
,
16
],
"tensor_name"
:
"input_7"
}],
[{
"data_type"
:
"float32"
,
"name"
:
"y"
,
"shape"
:
[
1
],
"tensor_name"
:
"input_8"
,
"value"
:
-1.0
}]
],
"name"
:
"Mul"
,
"output_desc"
:
[{
"data_type"
:
"float32"
,
"name"
:
"output"
,
"shape"
:
[
1
,
16
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_5"
}]
},
{
"attr"
:
[{
"name"
:
"dst_type"
,
"value"
:
"float32"
}],
"impl_path"
:
""
,
"input_desc"
:
[
[{
"data_type"
:
"float16"
,
"name"
:
"x"
,
"shape"
:
[
32
,
16
,
56
,
56
,
16
],
"tensor_name"
:
"input_9"
}]
],
"name"
:
"Cast"
,
"output_desc"
:
[{
"data_type"
:
"float32"
,
"name"
:
"output"
,
"shape"
:
[
32
,
16
,
56
,
56
,
16
],
"tensor_name"
:
"output_0_6"
}]
},
{
"attr"
:
null
,
"impl_path"
:
""
,
"input_desc"
:
[
[{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:
[
32
,
16
,
56
,
56
,
16
],
"tensor_name"
:
"output_0_6"
}],
[{
"data_type"
:
"float32"
,
"name"
:
"y"
,
"shape"
:
[
1
,
16
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_5"
}]
],
"name"
:
"TensorAdd"
,
"output_desc"
:
[{
"data_type"
:
"float32"
,
"name"
:
"output"
,
"shape"
:
[
32
,
16
,
56
,
56
,
16
],
"tensor_name"
:
"output_0_7"
}]
},
{
"attr"
:
[{
"name"
:
"x_shape"
,
"value"
:
[
32
,
256
,
56
,
56
]
},
{
"name"
:
"y_shape"
,
"value"
:
[
256
]
},
{
"name"
:
"data_format"
,
"value"
:
[
"NC1HWC0"
,
"NC1HWC0"
]
}],
"impl_path"
:
""
,
"input_desc"
:
[
[{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:
[
32
,
16
,
56
,
56
,
16
],
"tensor_name"
:
"output_0_7"
}],
[{
"data_type"
:
"float32"
,
"name"
:
"y"
,
"shape"
:
[
1
,
16
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_4"
}]
],
"name"
:
"Mul"
,
"output_desc"
:
[{
"data_type"
:
"float32"
,
"name"
:
"output"
,
"shape"
:
[
32
,
16
,
56
,
56
,
16
],
"tensor_name"
:
"output_0_8"
}]
},
{
"attr"
:
[{
"name"
:
"x_shape"
,
"value"
:
[
32
,
256
,
56
,
56
]
},
{
"name"
:
"y_shape"
,
"value"
:
[
32
,
256
,
56
,
56
]
},
{
"name"
:
"data_format"
,
"value"
:
[
"NC1HWC0"
,
"NC1HWC0"
]
}],
"impl_path"
:
""
,
"input_desc"
:
[
[{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:
[
32
,
16
,
56
,
56
,
16
],
"tensor_name"
:
"output_0_0"
}],
[{
"data_type"
:
"float32"
,
"name"
:
"y"
,
"shape"
:
[
32
,
16
,
56
,
56
,
16
],
"tensor_name"
:
"output_0_8"
}]
],
"name"
:
"Mul"
,
"output_desc"
:
[{
"data_type"
:
"float32"
,
"name"
:
"output"
,
"shape"
:
[
32
,
16
,
56
,
56
,
16
],
"tensor_name"
:
"output_0_9"
}]
},
{
"attr"
:
[{
"name"
:
"axis"
,
"value"
:
[
0
,
2
,
3
]
},
{
"name"
:
"keep_dims"
,
"value"
:
true
}],
"impl_path"
:
""
,
"input_desc"
:
[
[{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:
[
32
,
16
,
56
,
56
,
16
],
"tensor_name"
:
"output_0_9"
}]
],
"name"
:
"ReduceSum"
,
"output_desc"
:
[{
"data_type"
:
"float32"
,
"name"
:
"output"
,
"shape"
:
[
1
,
16
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_10"
}]
}],
"output_desc"
:
[{
"data_type"
:
"float32"
,
"shape"
:
[
1
,
16
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_10"
},
{
"data_type"
:
"float32"
,
"shape"
:
[
1
,
16
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_1"
}],
"platform"
:
"AKG"
,
"process"
:
"aicore"
}
tests/perf_benchmark/benchmark/json_benchmark/case3.json
0 → 100644
浏览文件 @
4200d597
{
"composite"
:
true
,
"input_desc"
:
[
[{
"data_type"
:
"float16"
,
"shape"
:
[
32
,
4
,
56
,
56
,
16
],
"tensor_name"
:
"input_19"
}],
[{
"data_type"
:
"float16"
,
"shape"
:
[
32
,
4
,
56
,
56
,
16
],
"tensor_name"
:
"input_14"
}],
[{
"data_type"
:
"float32"
,
"shape"
:
[
1
,
4
,
1
,
1
,
16
],
"tensor_name"
:
"input_7"
}],
[{
"data_type"
:
"float32"
,
"shape"
:
[
1
,
4
,
1
,
1
,
16
],
"tensor_name"
:
"input_5"
}],
[{
"data_type"
:
"float32"
,
"shape"
:
[
1
,
4
,
1
,
1
,
16
],
"tensor_name"
:
"input_3"
}],
[{
"data_type"
:
"float32"
,
"shape"
:
[
1
,
4
,
1
,
1
,
16
],
"tensor_name"
:
"input_9"
}],
[{
"data_type"
:
"float32"
,
"shape"
:
[
1
,
4
,
1
,
1
,
16
],
"tensor_name"
:
"input_0"
}]
],
"op"
:
"Fused_Poly_Schedule_Opt_003"
,
"op_desc"
:
[{
"attr"
:
null
,
"impl_path"
:
""
,
"input_desc"
:
[
[{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:
[
1
,
4
,
1
,
1
,
16
],
"tensor_name"
:
"input_0"
}],
[{
"data_type"
:
"float32"
,
"name"
:
"y"
,
"shape"
:
[
1
],
"tensor_name"
:
"input_1"
,
"value"
:
9.999999747378752e-05
}]
],
"name"
:
"TensorAdd"
,
"output_desc"
:
[{
"data_type"
:
"float32"
,
"name"
:
"output"
,
"shape"
:
[
1
,
4
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_0"
}]
},
{
"attr"
:
null
,
"impl_path"
:
""
,
"input_desc"
:
[
[{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:
[
1
,
4
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_0"
}]
],
"name"
:
"Sqrt"
,
"output_desc"
:
[{
"data_type"
:
"float32"
,
"name"
:
"output"
,
"shape"
:
[
1
,
4
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_1"
}]
},
{
"attr"
:
null
,
"impl_path"
:
""
,
"input_desc"
:
[
[{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:
[
1
,
4
,
1
,
1
,
16
],
"tensor_name"
:
"input_3"
}],
[{
"data_type"
:
"float32"
,
"name"
:
"y"
,
"shape"
:
[
1
,
4
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_1"
}]
],
"name"
:
"RealDiv"
,
"output_desc"
:
[{
"data_type"
:
"float32"
,
"name"
:
"output"
,
"shape"
:
[
1
,
4
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_2"
}]
},
{
"attr"
:
[{
"name"
:
"x_shape"
,
"value"
:
[
64
]
},
{
"name"
:
"y_shape"
,
"value"
:
[
1
]
},
{
"name"
:
"data_format"
,
"value"
:
[
"NC1HWC0"
,
"NC1HWC0"
]
}],
"impl_path"
:
""
,
"input_desc"
:
[
[{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:
[
1
,
4
,
1
,
1
,
16
],
"tensor_name"
:
"input_5"
}],
[{
"data_type"
:
"float32"
,
"name"
:
"y"
,
"shape"
:
[
1
],
"tensor_name"
:
"input_6"
,
"value"
:
-9.964923265215475e-06
}]
],
"name"
:
"Mul"
,
"output_desc"
:
[{
"data_type"
:
"float32"
,
"name"
:
"output"
,
"shape"
:
[
1
,
4
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_3"
}]
},
{
"attr"
:
[{
"name"
:
"x_shape"
,
"value"
:
[
64
]
},
{
"name"
:
"y_shape"
,
"value"
:
[
1
]
},
{
"name"
:
"data_format"
,
"value"
:
[
"NC1HWC0"
,
"NC1HWC0"
]
}],
"impl_path"
:
""
,
"input_desc"
:
[
[{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:
[
1
,
4
,
1
,
1
,
16
],
"tensor_name"
:
"input_7"
}],
[{
"data_type"
:
"float32"
,
"name"
:
"y"
,
"shape"
:
[
1
],
"tensor_name"
:
"input_8"
,
"value"
:
9.964923265215475e-06
}]
],
"name"
:
"Mul"
,
"output_desc"
:
[{
"data_type"
:
"float32"
,
"name"
:
"output"
,
"shape"
:
[
1
,
4
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_4"
}]
},
{
"attr"
:
null
,
"impl_path"
:
""
,
"input_desc"
:
[
[{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:
[
1
,
4
,
1
,
1
,
16
],
"tensor_name"
:
"input_9"
}],
[{
"data_type"
:
"float32"
,
"name"
:
"y"
,
"shape"
:
[
1
,
4
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_1"
}]
],
"name"
:
"RealDiv"
,
"output_desc"
:
[{
"data_type"
:
"float32"
,
"name"
:
"output"
,
"shape"
:
[
1
,
4
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_5"
}]
},
{
"attr"
:
[{
"name"
:
"x_shape"
,
"value"
:
[
64
]
},
{
"name"
:
"y_shape"
,
"value"
:
[
64
]
},
{
"name"
:
"data_format"
,
"value"
:
[
"NC1HWC0"
,
"NC1HWC0"
]
}],
"impl_path"
:
""
,
"input_desc"
:
[
[{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:
[
1
,
4
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_5"
}],
[{
"data_type"
:
"float32"
,
"name"
:
"y"
,
"shape"
:
[
1
,
4
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_4"
}]
],
"name"
:
"Mul"
,
"output_desc"
:
[{
"data_type"
:
"float32"
,
"name"
:
"output"
,
"shape"
:
[
1
,
4
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_6"
}]
},
{
"attr"
:
null
,
"impl_path"
:
""
,
"input_desc"
:
[
[{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:
[
1
,
4
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_6"
}],
[{
"data_type"
:
"float32"
,
"name"
:
"y"
,
"shape"
:
[
1
,
4
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_3"
}]
],
"name"
:
"TensorAdd"
,
"output_desc"
:
[{
"data_type"
:
"float32"
,
"name"
:
"output"
,
"shape"
:
[
1
,
4
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_7"
}]
},
{
"attr"
:
[{
"name"
:
"dst_type"
,
"value"
:
"float32"
}],
"impl_path"
:
""
,
"input_desc"
:
[
[{
"data_type"
:
"float16"
,
"name"
:
"x"
,
"shape"
:
[
32
,
4
,
56
,
56
,
16
],
"tensor_name"
:
"input_14"
}]
],
"name"
:
"Cast"
,
"output_desc"
:
[{
"data_type"
:
"float32"
,
"name"
:
"output"
,
"shape"
:
[
32
,
4
,
56
,
56
,
16
],
"tensor_name"
:
"output_0_8"
}]
},
{
"attr"
:
[{
"name"
:
"x_shape"
,
"value"
:
[
64
]
},
{
"name"
:
"y_shape"
,
"value"
:
[
1
]
},
{
"name"
:
"data_format"
,
"value"
:
[
"NC1HWC0"
,
"NC1HWC0"
]
}],
"impl_path"
:
""
,
"input_desc"
:
[
[{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:
[
1
,
4
,
1
,
1
,
16
],
"tensor_name"
:
"input_7"
}],
[{
"data_type"
:
"float32"
,
"name"
:
"y"
,
"shape"
:
[
1
],
"tensor_name"
:
"input_15"
,
"value"
:
-9.964923265215475e-06
}]
],
"name"
:
"Mul"
,
"output_desc"
:
[{
"data_type"
:
"float32"
,
"name"
:
"output"
,
"shape"
:
[
1
,
4
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_9"
}]
},
{
"attr"
:
null
,
"impl_path"
:
""
,
"input_desc"
:
[
[{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:
[
1
,
4
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_9"
}],
[{
"data_type"
:
"float32"
,
"name"
:
"y"
,
"shape"
:
[
1
,
4
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_1"
}]
],
"name"
:
"RealDiv"
,
"output_desc"
:
[{
"data_type"
:
"float32"
,
"name"
:
"output"
,
"shape"
:
[
1
,
4
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_10"
}]
},
{
"attr"
:
[{
"name"
:
"x_shape"
,
"value"
:
[
64
]
},
{
"name"
:
"y_shape"
,
"value"
:
[
32
,
64
,
56
,
56
]
},
{
"name"
:
"data_format"
,
"value"
:
[
"NC1HWC0"
,
"NC1HWC0"
]
}],
"impl_path"
:
""
,
"input_desc"
:
[
[{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:
[
1
,
4
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_10"
}],
[{
"data_type"
:
"float32"
,
"name"
:
"y"
,
"shape"
:
[
32
,
4
,
56
,
56
,
16
],
"tensor_name"
:
"output_0_8"
}]
],
"name"
:
"Mul"
,
"output_desc"
:
[{
"data_type"
:
"float32"
,
"name"
:
"output"
,
"shape"
:
[
32
,
4
,
56
,
56
,
16
],
"tensor_name"
:
"output_0_11"
}]
},
{
"attr"
:
[{
"name"
:
"dst_type"
,
"value"
:
"float32"
}],
"impl_path"
:
""
,
"input_desc"
:
[
[{
"data_type"
:
"float16"
,
"name"
:
"x"
,
"shape"
:
[
32
,
4
,
56
,
56
,
16
],
"tensor_name"
:
"input_19"
}]
],
"name"
:
"Cast"
,
"output_desc"
:
[{
"data_type"
:
"float32"
,
"name"
:
"output"
,
"shape"
:
[
32
,
4
,
56
,
56
,
16
],
"tensor_name"
:
"output_0_12"
}]
},
{
"attr"
:
null
,
"impl_path"
:
""
,
"input_desc"
:
[
[{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:
[
32
,
4
,
56
,
56
,
16
],
"tensor_name"
:
"output_0_12"
}],
[{
"data_type"
:
"float32"
,
"name"
:
"y"
,
"shape"
:
[
32
,
4
,
56
,
56
,
16
],
"tensor_name"
:
"output_0_11"
}]
],
"name"
:
"TensorAdd"
,
"output_desc"
:
[{
"data_type"
:
"float32"
,
"name"
:
"output"
,
"shape"
:
[
32
,
4
,
56
,
56
,
16
],
"tensor_name"
:
"output_0_13"
}]
},
{
"attr"
:
null
,
"impl_path"
:
""
,
"input_desc"
:
[
[{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:
[
32
,
4
,
56
,
56
,
16
],
"tensor_name"
:
"output_0_13"
}],
[{
"data_type"
:
"float32"
,
"name"
:
"y"
,
"shape"
:
[
1
,
4
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_7"
}]
],
"name"
:
"TensorAdd"
,
"output_desc"
:
[{
"data_type"
:
"float32"
,
"name"
:
"output"
,
"shape"
:
[
32
,
4
,
56
,
56
,
16
],
"tensor_name"
:
"output_0_14"
}]
},
{
"attr"
:
[{
"name"
:
"x_shape"
,
"value"
:
[
32
,
64
,
56
,
56
]
},
{
"name"
:
"y_shape"
,
"value"
:
[
64
]
},
{
"name"
:
"data_format"
,
"value"
:
[
"NC1HWC0"
,
"NC1HWC0"
]
}],
"impl_path"
:
""
,
"input_desc"
:
[
[{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:
[
32
,
4
,
56
,
56
,
16
],
"tensor_name"
:
"output_0_14"
}],
[{
"data_type"
:
"float32"
,
"name"
:
"y"
,
"shape"
:
[
1
,
4
,
1
,
1
,
16
],
"tensor_name"
:
"output_0_2"
}]
],
"name"
:
"Mul"
,
"output_desc"
:
[{
"data_type"
:
"float32"
,
"name"
:
"output"
,
"shape"
:
[
32
,
4
,
56
,
56
,
16
],
"tensor_name"
:
"output_0_15"
}]
},
{
"attr"
:
[{
"name"
:
"dst_type"
,
"value"
:
"float16"
}],
"impl_path"
:
""
,
"input_desc"
:
[
[{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:
[
32
,
4
,
56
,
56
,
16
],
"tensor_name"
:
"output_0_15"
}]
],
"name"
:
"Cast"
,
"output_desc"
:
[{
"data_type"
:
"float16"
,
"name"
:
"output"
,
"shape"
:
[
32
,
4
,
56
,
56
,
16
],
"tensor_name"
:
"output_0_16"
}]
}],
"output_desc"
:
[{
"data_type"
:
"float16"
,
"shape"
:
[
32
,
4
,
56
,
56
,
16
],
"tensor_name"
:
"output_0_16"
}],
"platform"
:
"AKG"
,
"process"
:
"aicore"
}
\ No newline at end of file
tests/perf_benchmark/benchmark/json_benchmark/case4_logsoftmax.json
0 → 100644
浏览文件 @
4200d597
{
"composite"
:
true
,
"composite_graph"
:
"14745"
,
"input_desc"
:[[{
"data_type"
:
"float32"
,
"shape"
:[
1216
,
30052
],
"tensor_name"
:
"input_1"
}],[{
"data_type"
:
"float32"
,
"shape"
:[
1216
,
30052
],
"tensor_name"
:
"input_0"
}]],
"op"
:
"Fused_LogSoftmax_16500795147666726961"
,
"op_desc"
:[{
"attr"
:[{
"name"
:
"axis"
,
"value"
:[
-1
]},{
"name"
:
"keep_dims"
,
"value"
:
true
}],
"impl_path"
:
""
,
"input_desc"
:[[{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:[
1216
,
30052
],
"tensor_name"
:
"input_0"
}]],
"name"
:
"ReduceSum"
,
"output_desc"
:[{
"data_type"
:
"float32"
,
"name"
:
"output"
,
"shape"
:[
1216
,
1
],
"tensor_name"
:
"output_0_0"
}]},{
"attr"
:
null
,
"impl_path"
:
""
,
"input_desc"
:[[{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:[
1216
,
30052
],
"tensor_name"
:
"input_1"
}]],
"name"
:
"Exp"
,
"output_desc"
:[{
"data_type"
:
"float32"
,
"name"
:
"output"
,
"shape"
:[
1216
,
30052
],
"tensor_name"
:
"output_0_1"
}]},{
"attr"
:[{
"name"
:
"x_shape"
,
"value"
:[
1216
,
30052
]},{
"name"
:
"y_shape"
,
"value"
:[
1216
,
1
]},{
"name"
:
"data_format"
,
"value"
:[
"DefaultFormat"
,
"DefaultFormat"
]}],
"impl_path"
:
""
,
"input_desc"
:[[{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:[
1216
,
30052
],
"tensor_name"
:
"output_0_1"
}],[{
"data_type"
:
"float32"
,
"name"
:
"y"
,
"shape"
:[
1216
,
1
],
"tensor_name"
:
"output_0_0"
}]],
"name"
:
"Mul"
,
"output_desc"
:[{
"data_type"
:
"float32"
,
"name"
:
"output"
,
"shape"
:[
1216
,
30052
],
"tensor_name"
:
"output_0_2"
}]},{
"attr"
:
null
,
"impl_path"
:
""
,
"input_desc"
:[[{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:[
1216
,
30052
],
"tensor_name"
:
"input_0"
}],[{
"data_type"
:
"float32"
,
"name"
:
"y"
,
"shape"
:[
1216
,
30052
],
"tensor_name"
:
"output_0_2"
}]],
"name"
:
"Sub"
,
"output_desc"
:[{
"data_type"
:
"float32"
,
"name"
:
"output"
,
"shape"
:[
1216
,
30052
],
"tensor_name"
:
"output_0_3"
}]},{
"attr"
:[{
"name"
:
"dst_type"
,
"value"
:
"float16"
}],
"impl_path"
:
""
,
"input_desc"
:[[{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:[
1216
,
30052
],
"tensor_name"
:
"output_0_3"
}]],
"name"
:
"Cast"
,
"output_desc"
:[{
"data_type"
:
"float16"
,
"name"
:
"output"
,
"shape"
:[
1216
,
30052
],
"tensor_name"
:
"output_0_4"
}]}],
"output_desc"
:[{
"data_type"
:
"float32"
,
"shape"
:[
1216
,
30052
],
"tensor_name"
:
"output_0_3"
},{
"data_type"
:
"float16"
,
"shape"
:[
1216
,
30052
],
"tensor_name"
:
"output_0_4"
}],
"platform"
:
"AKG"
,
"process"
:
"aicore"
}
tests/perf_benchmark/benchmark/json_benchmark/case5_reciprocal.json
0 → 100644
浏览文件 @
4200d597
{
"composite"
:
true
,
"composite_graph"
:
"12299"
,
"input_desc"
:[[{
"data_type"
:
"float32"
,
"shape"
:[],
"tensor_name"
:
"input_0"
}],[{
"data_type"
:
"float32"
,
"shape"
:[
1216
,
30522
],
"tensor_name"
:
"input_1"
}]],
"op"
:
"Fused_Reciprocal_ReduceSum_Mul___1222261331617186059"
,
"op_desc"
:[{
"attr"
:
null
,
"impl_path"
:
""
,
"input_desc"
:[[{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:[
1
],
"tensor_name"
:
"input_0"
}]],
"name"
:
"Reciprocal"
,
"output_desc"
:[{
"data_type"
:
"float32"
,
"name"
:
"output"
,
"shape"
:[],
"tensor_name"
:
"output_0_0"
}]},{
"attr"
:[{
"name"
:
"axis"
,
"value"
:[
0
]},{
"name"
:
"keep_dims"
,
"value"
:
false
}],
"impl_path"
:
""
,
"input_desc"
:[[{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:[
1216
,
30522
],
"tensor_name"
:
"input_1"
}]],
"name"
:
"ReduceSum"
,
"output_desc"
:[{
"data_type"
:
"float32"
,
"name"
:
"output"
,
"shape"
:[
30522
],
"tensor_name"
:
"output_0_1"
}]},{
"attr"
:[{
"name"
:
"x_shape"
,
"value"
:[
30522
]},{
"name"
:
"y_shape"
,
"value"
:[]},{
"name"
:
"data_format"
,
"value"
:[
"DefaultFormat"
,
"DefaultFormat"
]}],
"impl_path"
:
""
,
"input_desc"
:[[{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:[
30522
],
"tensor_name"
:
"output_0_1"
}],[{
"data_type"
:
"float32"
,
"name"
:
"y"
,
"shape"
:[
1
],
"tensor_name"
:
"output_0_0"
}]],
"name"
:
"Mul"
,
"output_desc"
:[{
"data_type"
:
"float32"
,
"name"
:
"output"
,
"shape"
:[
30522
],
"tensor_name"
:
"output_0_2"
}]}],
"output_desc"
:[{
"data_type"
:
"float32"
,
"shape"
:[
1
],
"tensor_name"
:
"output_0_0"
},{
"data_type"
:
"float32"
,
"shape"
:[
30522
],
"tensor_name"
:
"output_0_2"
}],
"platform"
:
"AKG"
,
"process"
:
"aicore"
}
tests/perf_benchmark/benchmark/json_benchmark/case6_mul_mul.json
0 → 100644
浏览文件 @
4200d597
{
"composite"
:
true
,
"composite_graph"
:
"10313"
,
"input_desc"
:[[{
"data_type"
:
"float16"
,
"shape"
:[
16
,
1
,
1
,
512
],
"tensor_name"
:
"input_2"
}],[{
"data_type"
:
"float16"
,
"shape"
:[
16
,
16
,
512
,
512
],
"tensor_name"
:
"input_1"
}]],
"op"
:
"Fused_Mul_Mul_TensorAdd__4400644352246048056"
,
"op_desc"
:[{
"attr"
:[{
"name"
:
"x_shape"
,
"value"
:[
1
]},{
"name"
:
"y_shape"
,
"value"
:[
16
,
16
,
512
,
512
]},{
"name"
:
"data_format"
,
"value"
:[
"DefaultFormat"
,
"DefaultFormat"
]}],
"impl_path"
:
""
,
"input_desc"
:[[{
"data_type"
:
"float16"
,
"name"
:
"x"
,
"shape"
:[
1
],
"tensor_name"
:
"input_0"
,
"value"
:
0.125
}],[{
"data_type"
:
"float16"
,
"name"
:
"y"
,
"shape"
:[
16
,
16
,
512
,
512
],
"tensor_name"
:
"input_1"
}]],
"name"
:
"Mul"
,
"output_desc"
:[{
"data_type"
:
"float16"
,
"name"
:
"output"
,
"shape"
:[
16
,
16
,
512
,
512
],
"tensor_name"
:
"output_0_0"
}]},{
"attr"
:[{
"name"
:
"x_shape"
,
"value"
:[
16
,
1
,
1
,
512
]},{
"name"
:
"y_shape"
,
"value"
:[
1
]},{
"name"
:
"data_format"
,
"value"
:[
"DefaultFormat"
,
"DefaultFormat"
]}],
"impl_path"
:
""
,
"input_desc"
:[[{
"data_type"
:
"float16"
,
"name"
:
"x"
,
"shape"
:[
16
,
1
,
1
,
512
],
"tensor_name"
:
"input_2"
}],[{
"data_type"
:
"float16"
,
"name"
:
"y"
,
"shape"
:[
1
],
"tensor_name"
:
"input_3"
,
"value"
:
-10000.0
}]],
"name"
:
"Mul"
,
"output_desc"
:[{
"data_type"
:
"float16"
,
"name"
:
"output"
,
"shape"
:[
16
,
1
,
1
,
512
],
"tensor_name"
:
"output_0_1"
}]},{
"attr"
:
null
,
"impl_path"
:
""
,
"input_desc"
:[[{
"data_type"
:
"float16"
,
"name"
:
"x"
,
"shape"
:[
16
,
1
,
1
,
512
],
"tensor_name"
:
"output_0_1"
}],[{
"data_type"
:
"float16"
,
"name"
:
"y"
,
"shape"
:[
16
,
16
,
512
,
512
],
"tensor_name"
:
"output_0_0"
}]],
"name"
:
"TensorAdd"
,
"output_desc"
:[{
"data_type"
:
"float16"
,
"name"
:
"output"
,
"shape"
:[
16
,
16
,
512
,
512
],
"tensor_name"
:
"output_0_2"
}]}],
"output_desc"
:[{
"data_type"
:
"float16"
,
"shape"
:[
16
,
1
,
1
,
512
],
"tensor_name"
:
"output_0_1"
},{
"data_type"
:
"float16"
,
"shape"
:[
16
,
16
,
512
,
512
],
"tensor_name"
:
"output_0_2"
}],
"platform"
:
"AKG"
,
"process"
:
"aicore"
}
tests/perf_benchmark/benchmark/json_benchmark/case7_mul_mul.json
0 → 100644
浏览文件 @
4200d597
{
"composite"
:
true
,
"composite_graph"
:
"11288"
,
"input_desc"
:[[{
"data_type"
:
"float32"
,
"shape"
:[
1024
],
"tensor_name"
:
"input_1"
}],[{
"data_type"
:
"float32"
,
"shape"
:[
1024
],
"tensor_name"
:
"input_0"
}],[{
"data_type"
:
"float16"
,
"shape"
:[
8192
,
1024
],
"tensor_name"
:
"input_2"
}]],
"op"
:
"Fused_Cast_Cast_Mul_TensorAdd___12292245117929986167"
,
"op_desc"
:[{
"attr"
:[{
"name"
:
"dst_type"
,
"value"
:
"float16"
}],
"impl_path"
:
""
,
"input_desc"
:[[{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:[
1024
],
"tensor_name"
:
"input_0"
}]],
"name"
:
"Cast"
,
"output_desc"
:[{
"data_type"
:
"float16"
,
"name"
:
"output"
,
"shape"
:[
1024
],
"tensor_name"
:
"output_0_0"
}]},{
"attr"
:[{
"name"
:
"dst_type"
,
"value"
:
"float16"
}],
"impl_path"
:
""
,
"input_desc"
:[[{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:[
1024
],
"tensor_name"
:
"input_1"
}]],
"name"
:
"Cast"
,
"output_desc"
:[{
"data_type"
:
"float16"
,
"name"
:
"output"
,
"shape"
:[
1024
],
"tensor_name"
:
"output_0_1"
}]},{
"attr"
:[{
"name"
:
"x_shape"
,
"value"
:[
8192
,
1024
]},{
"name"
:
"y_shape"
,
"value"
:[
1024
]},{
"name"
:
"data_format"
,
"value"
:[
"DefaultFormat"
,
"DefaultFormat"
]}],
"impl_path"
:
""
,
"input_desc"
:[[{
"data_type"
:
"float16"
,
"name"
:
"x"
,
"shape"
:[
8192
,
1024
],
"tensor_name"
:
"input_2"
}],[{
"data_type"
:
"float16"
,
"name"
:
"y"
,
"shape"
:[
1024
],
"tensor_name"
:
"output_0_1"
}]],
"name"
:
"Mul"
,
"output_desc"
:[{
"data_type"
:
"float16"
,
"name"
:
"output"
,
"shape"
:[
8192
,
1024
],
"tensor_name"
:
"output_0_2"
}]},{
"attr"
:
null
,
"impl_path"
:
""
,
"input_desc"
:[[{
"data_type"
:
"float16"
,
"name"
:
"x"
,
"shape"
:[
8192
,
1024
],
"tensor_name"
:
"output_0_2"
}],[{
"data_type"
:
"float16"
,
"name"
:
"y"
,
"shape"
:[
1024
],
"tensor_name"
:
"output_0_0"
}]],
"name"
:
"TensorAdd"
,
"output_desc"
:[{
"data_type"
:
"float16"
,
"name"
:
"output"
,
"shape"
:[
8192
,
1024
],
"tensor_name"
:
"output_0_3"
}]}],
"output_desc"
:[{
"data_type"
:
"float16"
,
"shape"
:[
1024
],
"tensor_name"
:
"output_0_1"
},{
"data_type"
:
"float16"
,
"shape"
:[
8192
,
1024
],
"tensor_name"
:
"output_0_3"
}],
"platform"
:
"AKG"
,
"process"
:
"aicore"
}
tests/perf_benchmark/benchmark/json_benchmark/case8_cast_cast.json
0 → 100644
浏览文件 @
4200d597
{
"composite"
:
true
,
"composite_graph"
:
"11288"
,
"input_desc"
:[[{
"data_type"
:
"float32"
,
"shape"
:[
1024
],
"tensor_name"
:
"input_1"
}],[{
"data_type"
:
"float32"
,
"shape"
:[
1024
],
"tensor_name"
:
"input_0"
}],[{
"data_type"
:
"float16"
,
"shape"
:[
8192
,
1024
],
"tensor_name"
:
"input_2"
}]],
"op"
:
"Fused_Cast_Cast_Mul_TensorAdd___12292245117929986167"
,
"op_desc"
:[{
"attr"
:[{
"name"
:
"dst_type"
,
"value"
:
"float16"
}],
"impl_path"
:
""
,
"input_desc"
:[[{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:[
1024
],
"tensor_name"
:
"input_0"
}]],
"name"
:
"Cast"
,
"output_desc"
:[{
"data_type"
:
"float16"
,
"name"
:
"output"
,
"shape"
:[
1024
],
"tensor_name"
:
"output_0_0"
}]},{
"attr"
:[{
"name"
:
"dst_type"
,
"value"
:
"float16"
}],
"impl_path"
:
""
,
"input_desc"
:[[{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:[
1024
],
"tensor_name"
:
"input_1"
}]],
"name"
:
"Cast"
,
"output_desc"
:[{
"data_type"
:
"float16"
,
"name"
:
"output"
,
"shape"
:[
1024
],
"tensor_name"
:
"output_0_1"
}]},{
"attr"
:[{
"name"
:
"x_shape"
,
"value"
:[
8192
,
1024
]},{
"name"
:
"y_shape"
,
"value"
:[
1024
]},{
"name"
:
"data_format"
,
"value"
:[
"DefaultFormat"
,
"DefaultFormat"
]}],
"impl_path"
:
""
,
"input_desc"
:[[{
"data_type"
:
"float16"
,
"name"
:
"x"
,
"shape"
:[
8192
,
1024
],
"tensor_name"
:
"input_2"
}],[{
"data_type"
:
"float16"
,
"name"
:
"y"
,
"shape"
:[
1024
],
"tensor_name"
:
"output_0_1"
}]],
"name"
:
"Mul"
,
"output_desc"
:[{
"data_type"
:
"float16"
,
"name"
:
"output"
,
"shape"
:[
8192
,
1024
],
"tensor_name"
:
"output_0_2"
}]},{
"attr"
:
null
,
"impl_path"
:
""
,
"input_desc"
:[[{
"data_type"
:
"float16"
,
"name"
:
"x"
,
"shape"
:[
8192
,
1024
],
"tensor_name"
:
"output_0_2"
}],[{
"data_type"
:
"float16"
,
"name"
:
"y"
,
"shape"
:[
1024
],
"tensor_name"
:
"output_0_0"
}]],
"name"
:
"TensorAdd"
,
"output_desc"
:[{
"data_type"
:
"float16"
,
"name"
:
"output"
,
"shape"
:[
8192
,
1024
],
"tensor_name"
:
"output_0_3"
}]}],
"output_desc"
:[{
"data_type"
:
"float16"
,
"shape"
:[
1024
],
"tensor_name"
:
"output_0_1"
},{
"data_type"
:
"float16"
,
"shape"
:[
8192
,
1024
],
"tensor_name"
:
"output_0_3"
}],
"platform"
:
"AKG"
,
"process"
:
"aicore"
}
tests/perf_benchmark/benchmark/json_benchmark/case9.json
0 → 100644
浏览文件 @
4200d597
{
"composite"
:
true
,
"composite_graph"
:
"11288"
,
"input_desc"
:[[{
"data_type"
:
"float32"
,
"shape"
:[
1024
],
"tensor_name"
:
"input_1"
}],[{
"data_type"
:
"float32"
,
"shape"
:[
1024
],
"tensor_name"
:
"input_0"
}],[{
"data_type"
:
"float16"
,
"shape"
:[
8192
,
1024
],
"tensor_name"
:
"input_2"
}]],
"op"
:
"Fused_Cast_Cast_Mul_TensorAdd___12292245117929986167"
,
"op_desc"
:[{
"attr"
:[{
"name"
:
"dst_type"
,
"value"
:
"float16"
}],
"impl_path"
:
""
,
"input_desc"
:[[{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:[
1024
],
"tensor_name"
:
"input_0"
}]],
"name"
:
"Cast"
,
"output_desc"
:[{
"data_type"
:
"float16"
,
"name"
:
"output"
,
"shape"
:[
1024
],
"tensor_name"
:
"output_0_0"
}]},{
"attr"
:[{
"name"
:
"dst_type"
,
"value"
:
"float16"
}],
"impl_path"
:
""
,
"input_desc"
:[[{
"data_type"
:
"float32"
,
"name"
:
"x"
,
"shape"
:[
1024
],
"tensor_name"
:
"input_1"
}]],
"name"
:
"Cast"
,
"output_desc"
:[{
"data_type"
:
"float16"
,
"name"
:
"output"
,
"shape"
:[
1024
],
"tensor_name"
:
"output_0_1"
}]},{
"attr"
:[{
"name"
:
"x_shape"
,
"value"
:[
8192
,
1024
]},{
"name"
:
"y_shape"
,
"value"
:[
1024
]},{
"name"
:
"data_format"
,
"value"
:[
"DefaultFormat"
,
"DefaultFormat"
]}],
"impl_path"
:
""
,
"input_desc"
:[[{
"data_type"
:
"float16"
,
"name"
:
"x"
,
"shape"
:[
8192
,
1024
],
"tensor_name"
:
"input_2"
}],[{
"data_type"
:
"float16"
,
"name"
:
"y"
,
"shape"
:[
1024
],
"tensor_name"
:
"output_0_1"
}]],
"name"
:
"Mul"
,
"output_desc"
:[{
"data_type"
:
"float16"
,
"name"
:
"output"
,
"shape"
:[
8192
,
1024
],
"tensor_name"
:
"output_0_2"
}]},{
"attr"
:
null
,
"impl_path"
:
""
,
"input_desc"
:[[{
"data_type"
:
"float16"
,
"name"
:
"x"
,
"shape"
:[
8192
,
1024
],
"tensor_name"
:
"output_0_2"
}],[{
"data_type"
:
"float16"
,
"name"
:
"y"
,
"shape"
:[
1024
],
"tensor_name"
:
"output_0_0"
}]],
"name"
:
"TensorAdd"
,
"output_desc"
:[{
"data_type"
:
"float16"
,
"name"
:
"output"
,
"shape"
:[
8192
,
1024
],
"tensor_name"
:
"output_0_3"
}]}],
"output_desc"
:[{
"data_type"
:
"float16"
,
"shape"
:[
1024
],
"tensor_name"
:
"output_0_1"
},{
"data_type"
:
"float16"
,
"shape"
:[
8192
,
1024
],
"tensor_name"
:
"output_0_3"
}],
"platform"
:
"AKG"
,
"process"
:
"aicore"
}
tests/perf_benchmark/benchmark/network_benchmark_op.py
0 → 100644
浏览文件 @
4200d597
import
boot
def
test_compile_too_long
():
boot
.
run
(
"conv_backprop_filter_run_019"
,
"conv_filter_ad_run"
,
((
32
,
128
,
56
,
56
),
(
128
,
128
,
3
,
3
),
(
0
,
1
,
0
,
1
),
(
2
,
2
),
(
1
,
1
))),
boot
.
run
(
"conv_backprop_filter_run_010"
,
"conv_backprop_filter_run"
,
((
1
,
3
,
224
,
224
),(
64
,
3
,
7
,
7
),(
3
,
3
,
3
,
3
),(
2
,
2
),(
1
,
1
))),
def
test_resnet_benchmark
():
boot
.
run
(
"resnet50_maxpool_with_argmax_000"
,
"maxpool_with_argmax_run"
,
((
32
,
4
,
112
,
112
,
16
),
(
3
,
3
),
(
2
,
2
),
'SAME'
,
True
,
"float16"
)),
boot
.
run
(
"resnet50_bn_split_005"
,
"bn_split_run"
,
((
32
,
4
,
112
,
112
,
16
),
"float32"
,
0.1
,
1e-4
,
"resnet50_bn_split"
)),
boot
.
run
(
"resnet50_conv_bn1_026"
,
"conv_bn1_run"
,
((
32
,
3
,
224
,
224
),
(
64
,
3
,
7
,
7
),
(
2
,
3
,
2
,
3
),
(
2
,
2
),
(
1
,
1
),
False
)),
boot
.
run
(
"resnet50_four2five_003"
,
"four2five_run"
,
([
32
,
3
,
224
,
224
],
"float16"
,
"NCHW"
,
"float16"
)),
boot
.
run
(
"resnet50_softmax_004"
,
"softmax_run"
,
((
32
,
1001
),
"float32"
,
-
1
,
"softmax_32"
)),
boot
.
run
(
"resnet50_apply_momentum_002"
,
"apply_momentum_run"
,
((
128
,
32
,
16
,
16
),
"float32"
,
False
)),
boot
.
run
(
"resnet50_mean_000"
,
"mean_run"
,
((
32
,
128
,
7
,
7
,
16
),
"float32"
,
(
2
,
3
),
True
,
"cce_mean"
)),
def
test_bert_benchmark
():
boot
.
run
(
"bert_batch_matmul_003_242"
,
"batchmatmul_run"
,
((),
4096
,
3072
,
768
,
(
3072
,
),
"float32"
,
False
,
True
,
"batch_matmul_output"
)),
boot
.
run
(
"fused_layernorm_002_1280_1024"
,
"fused_layernorm_run"
,
((
1280
,
1024
),
1
,
-
1
,
'float16'
)),
boot
.
run
(
"logsoftmax_grad_002"
,
"logsoftmax_grad_run"
,
((
160
,
30522
),
"float32"
,
-
1
,
"cce_logsoftmax_fp16"
)),
boot
.
run
(
"unsortedsegmentsum_002"
,
"unsortedsegmentsum_run"
,
([
1280
,
1024
],
[
1280
],
8192
,
"float32"
)),
boot
.
run
(
"transpose_002"
,
"transpose_run"
,
((
8
,
16
,
128
,
64
),
(
0
,
2
,
1
,
3
),
"float32"
)),
boot
.
run
(
"fused_layer_norm_grad_01"
,
"fused_layer_norm_grad_run"
,
((
8192
,
1024
),
-
1
,
-
1
,
"float16"
)),
boot
.
run
(
"logsoftmax_002_fp32"
,
"logsoftmax_run"
,
((
160
,
30522
),
"float32"
,
-
1
,
"cce_logsoftmax_fp32"
)),
boot
.
run
(
"strided_slice_grad_002"
,
"strided_slice_grad_run"
,((
128
,
128
,
768
),
[
0
,
0
,
0
],
[
128
,
1
,
768
],
[
1
,
1
,
1
],
0
,
0
,
0
,
0
,
0
,
(
128
,
1
,
768
),
"int32"
))
\ No newline at end of file
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录