// Licensed to the LF AI & Data foundation under one // or more contributor license agreements. See the NOTICE file // distributed with this work for additional information // regarding copyright ownership. The ASF licenses this file // to you under the Apache License, Version 2.0 (the // "License"); you may not use this file except in compliance // with the License. You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package querycoord import ( "context" "errors" "fmt" "math" "math/rand" "os" "sort" "sync" "sync/atomic" "syscall" "time" "github.com/golang/protobuf/proto" "github.com/milvus-io/milvus/internal/allocator" etcdkv "github.com/milvus-io/milvus/internal/kv/etcd" "github.com/milvus-io/milvus/internal/log" "github.com/milvus-io/milvus/internal/mq/msgstream" "github.com/milvus-io/milvus/internal/proto/commonpb" "github.com/milvus-io/milvus/internal/proto/internalpb" "github.com/milvus-io/milvus/internal/proto/querypb" "github.com/milvus-io/milvus/internal/storage" "github.com/milvus-io/milvus/internal/types" "github.com/milvus-io/milvus/internal/util/metricsinfo" "github.com/milvus-io/milvus/internal/util/paramtable" "github.com/milvus-io/milvus/internal/util/sessionutil" "github.com/milvus-io/milvus/internal/util/tsoutil" "github.com/milvus-io/milvus/internal/util/typeutil" "go.etcd.io/etcd/api/v3/mvccpb" clientv3 "go.etcd.io/etcd/client/v3" "go.uber.org/zap" ) const ( handoffSegmentPrefix = "querycoord-handoff" ) // UniqueID is an alias for the Int64 type type UniqueID = typeutil.UniqueID // Timestamp is an alias for the Int64 type type Timestamp = typeutil.Timestamp type queryChannelInfo struct { requestChannel string responseChannel string } // Params is param table of query coordinator var Params paramtable.ComponentParam // QueryCoord is the coordinator of queryNodes type QueryCoord struct { loopCtx context.Context loopCancel context.CancelFunc loopWg sync.WaitGroup kvClient *etcdkv.EtcdKV initOnce sync.Once queryCoordID uint64 meta Meta cluster Cluster handler *channelUnsubscribeHandler newNodeFn newQueryNodeFn scheduler *TaskScheduler idAllocator func() (UniqueID, error) indexChecker *IndexChecker metricsCacheManager *metricsinfo.MetricsCacheManager etcdCli *clientv3.Client dataCoordClient types.DataCoord rootCoordClient types.RootCoord indexCoordClient types.IndexCoord broker *globalMetaBroker session *sessionutil.Session eventChan <-chan *sessionutil.SessionEvent stateCode atomic.Value msFactory msgstream.Factory chunkManager storage.ChunkManager } // Register register query service at etcd func (qc *QueryCoord) Register() error { qc.session.Register() go qc.session.LivenessCheck(qc.loopCtx, func() { log.Error("Query Coord disconnected from etcd, process will exit", zap.Int64("Server Id", qc.session.ServerID)) if err := qc.Stop(); err != nil { log.Fatal("failed to stop server", zap.Error(err)) } // manually send signal to starter goroutine if qc.session.TriggerKill { if p, err := os.FindProcess(os.Getpid()); err == nil { p.Signal(syscall.SIGINT) } } }) return nil } func (qc *QueryCoord) initSession() error { qc.session = sessionutil.NewSession(qc.loopCtx, Params.EtcdCfg.MetaRootPath, qc.etcdCli) if qc.session == nil { return fmt.Errorf("session is nil, the etcd client connection may have failed") } qc.session.Init(typeutil.QueryCoordRole, Params.QueryCoordCfg.Address, true, true) Params.QueryCoordCfg.NodeID = uint64(qc.session.ServerID) Params.SetLogger(qc.session.ServerID) return nil } // Init function initializes the queryCoord's meta, cluster, etcdKV and task scheduler func (qc *QueryCoord) Init() error { log.Debug("query coordinator start init, session info", zap.String("metaPath", Params.EtcdCfg.MetaRootPath), zap.String("address", Params.QueryCoordCfg.Address)) var initError error qc.initOnce.Do(func() { err := qc.initSession() if err != nil { log.Error("queryCoord init session failed", zap.Error(err)) initError = err return } log.Debug("queryCoord try to connect etcd") etcdKV := etcdkv.NewEtcdKV(qc.etcdCli, Params.EtcdCfg.MetaRootPath) qc.kvClient = etcdKV log.Debug("query coordinator try to connect etcd success") // init id allocator idAllocatorKV := tsoutil.NewTSOKVBase(qc.etcdCli, Params.EtcdCfg.KvRootPath, "queryCoordTaskID") idAllocator := allocator.NewGlobalIDAllocator("idTimestamp", idAllocatorKV) initError = idAllocator.Initialize() if initError != nil { log.Debug("query coordinator idAllocator initialize failed", zap.Error(initError)) return } qc.idAllocator = func() (UniqueID, error) { return idAllocator.AllocOne() } // init meta qc.meta, initError = newMeta(qc.loopCtx, qc.kvClient, qc.msFactory, qc.idAllocator) if initError != nil { log.Error("query coordinator init meta failed", zap.Error(initError)) return } // init channelUnsubscribeHandler qc.handler, initError = newChannelUnsubscribeHandler(qc.loopCtx, qc.kvClient, qc.msFactory) if initError != nil { log.Error("query coordinator init channelUnsubscribeHandler failed", zap.Error(initError)) return } // init cluster qc.cluster, initError = newQueryNodeCluster(qc.loopCtx, qc.meta, qc.kvClient, qc.newNodeFn, qc.session, qc.handler) if initError != nil { log.Error("query coordinator init cluster failed", zap.Error(initError)) return } qc.chunkManager, initError = storage.NewMinioChunkManager(qc.loopCtx, storage.Address(Params.MinioCfg.Address), storage.AccessKeyID(Params.MinioCfg.AccessKeyID), storage.SecretAccessKeyID(Params.MinioCfg.SecretAccessKey), storage.UseSSL(Params.MinioCfg.UseSSL), storage.BucketName(Params.MinioCfg.BucketName), storage.CreateBucket(true)) if initError != nil { log.Error("query coordinator init cluster failed", zap.Error(initError)) return } //init globalMetaBroker qc.broker, initError = newGlobalMetaBroker(qc.loopCtx, qc.rootCoordClient, qc.dataCoordClient, qc.indexCoordClient, qc.chunkManager) if initError != nil { log.Error("query coordinator init globalMetaBroker failed", zap.Error(initError)) return } // init task scheduler qc.scheduler, initError = newTaskScheduler(qc.loopCtx, qc.meta, qc.cluster, qc.kvClient, qc.broker, qc.idAllocator) if initError != nil { log.Error("query coordinator init task scheduler failed", zap.Error(initError)) return } // init index checker qc.indexChecker, initError = newIndexChecker(qc.loopCtx, qc.kvClient, qc.meta, qc.cluster, qc.scheduler, qc.broker) if initError != nil { log.Error("query coordinator init index checker failed", zap.Error(initError)) return } qc.metricsCacheManager = metricsinfo.NewMetricsCacheManager() }) log.Debug("QueryCoord init success") return initError } // Start function starts the goroutines to watch the meta and node updates func (qc *QueryCoord) Start() error { err := qc.msFactory.Init(&Params) if err != nil { return err } qc.scheduler.Start() log.Debug("start scheduler ...") qc.indexChecker.start() log.Debug("start index checker ...") qc.handler.start() log.Debug("start channel unsubscribe loop ...") Params.QueryCoordCfg.CreatedTime = time.Now() Params.QueryCoordCfg.UpdatedTime = time.Now() qc.loopWg.Add(1) go qc.watchNodeLoop() qc.loopWg.Add(1) go qc.watchHandoffSegmentLoop() if Params.QueryCoordCfg.AutoBalance { qc.loopWg.Add(1) go qc.loadBalanceSegmentLoop() } qc.UpdateStateCode(internalpb.StateCode_Healthy) return nil } // Stop function stops watching the meta and node updates func (qc *QueryCoord) Stop() error { qc.UpdateStateCode(internalpb.StateCode_Abnormal) if qc.scheduler != nil { qc.scheduler.Close() log.Debug("close scheduler ...") } if qc.indexChecker != nil { qc.indexChecker.close() log.Debug("close index checker ...") } if qc.handler != nil { qc.handler.close() log.Debug("close channel unsubscribe loop ...") } if qc.loopCancel != nil { qc.loopCancel() log.Info("cancel the loop of QueryCoord") } qc.loopWg.Wait() qc.session.Revoke(time.Second) return nil } // UpdateStateCode updates the status of the coord, including healthy, unhealthy func (qc *QueryCoord) UpdateStateCode(code internalpb.StateCode) { qc.stateCode.Store(code) } // NewQueryCoord creates a QueryCoord object. func NewQueryCoord(ctx context.Context, factory msgstream.Factory) (*QueryCoord, error) { rand.Seed(time.Now().UnixNano()) ctx1, cancel := context.WithCancel(ctx) service := &QueryCoord{ loopCtx: ctx1, loopCancel: cancel, msFactory: factory, newNodeFn: newQueryNode, } service.UpdateStateCode(internalpb.StateCode_Abnormal) return service, nil } // SetEtcdClient sets etcd's client func (qc *QueryCoord) SetEtcdClient(etcdClient *clientv3.Client) { qc.etcdCli = etcdClient } // SetRootCoord sets root coordinator's client func (qc *QueryCoord) SetRootCoord(rootCoord types.RootCoord) error { if rootCoord == nil { return errors.New("null RootCoord interface") } qc.rootCoordClient = rootCoord return nil } // SetDataCoord sets data coordinator's client func (qc *QueryCoord) SetDataCoord(dataCoord types.DataCoord) error { if dataCoord == nil { return errors.New("null DataCoord interface") } qc.dataCoordClient = dataCoord return nil } // SetIndexCoord sets index coordinator's client func (qc *QueryCoord) SetIndexCoord(indexCoord types.IndexCoord) error { if indexCoord == nil { return errors.New("null IndexCoord interface") } qc.indexCoordClient = indexCoord return nil } func (qc *QueryCoord) watchNodeLoop() { ctx, cancel := context.WithCancel(qc.loopCtx) defer cancel() defer qc.loopWg.Done() log.Debug("QueryCoord start watch node loop") offlineNodeIDs := qc.cluster.offlineNodeIDs() if len(offlineNodeIDs) != 0 { loadBalanceSegment := &querypb.LoadBalanceRequest{ Base: &commonpb.MsgBase{ MsgType: commonpb.MsgType_LoadBalanceSegments, SourceID: qc.session.ServerID, }, BalanceReason: querypb.TriggerCondition_NodeDown, SourceNodeIDs: offlineNodeIDs, } baseTask := newBaseTask(qc.loopCtx, querypb.TriggerCondition_NodeDown) loadBalanceTask := &loadBalanceTask{ baseTask: baseTask, LoadBalanceRequest: loadBalanceSegment, broker: qc.broker, cluster: qc.cluster, meta: qc.meta, } //TODO::deal enqueue error qc.scheduler.Enqueue(loadBalanceTask) log.Debug("start a loadBalance task", zap.Any("task", loadBalanceTask)) } // TODO silverxia add Rewatch logic qc.eventChan = qc.session.WatchServices(typeutil.QueryNodeRole, qc.cluster.getSessionVersion()+1, nil) qc.handleNodeEvent(ctx) } func (qc *QueryCoord) handleNodeEvent(ctx context.Context) { for { select { case <-ctx.Done(): return case event, ok := <-qc.eventChan: if !ok { // ErrCompacted is handled inside SessionWatcher log.Error("Session Watcher channel closed", zap.Int64("server id", qc.session.ServerID)) go qc.Stop() if qc.session.TriggerKill { if p, err := os.FindProcess(os.Getpid()); err == nil { p.Signal(syscall.SIGINT) } } return } switch event.EventType { case sessionutil.SessionAddEvent: serverID := event.Session.ServerID log.Debug("start add a QueryNode to cluster", zap.Any("nodeID", serverID)) err := qc.cluster.registerNode(ctx, event.Session, serverID, disConnect) if err != nil { log.Error("QueryCoord failed to register a QueryNode", zap.Int64("nodeID", serverID), zap.String("error info", err.Error())) } qc.metricsCacheManager.InvalidateSystemInfoMetrics() case sessionutil.SessionDelEvent: serverID := event.Session.ServerID log.Debug("get a del event after QueryNode down", zap.Int64("nodeID", serverID)) nodeExist := qc.cluster.hasNode(serverID) if !nodeExist { log.Error("QueryNode not exist", zap.Int64("nodeID", serverID)) continue } qc.cluster.stopNode(serverID) loadBalanceSegment := &querypb.LoadBalanceRequest{ Base: &commonpb.MsgBase{ MsgType: commonpb.MsgType_LoadBalanceSegments, SourceID: qc.session.ServerID, }, SourceNodeIDs: []int64{serverID}, BalanceReason: querypb.TriggerCondition_NodeDown, } baseTask := newBaseTask(qc.loopCtx, querypb.TriggerCondition_NodeDown) loadBalanceTask := &loadBalanceTask{ baseTask: baseTask, LoadBalanceRequest: loadBalanceSegment, broker: qc.broker, cluster: qc.cluster, meta: qc.meta, } qc.metricsCacheManager.InvalidateSystemInfoMetrics() //TODO:: deal enqueue error qc.scheduler.Enqueue(loadBalanceTask) log.Debug("start a loadBalance task", zap.Any("task", loadBalanceTask)) } } } } func (qc *QueryCoord) watchHandoffSegmentLoop() { ctx, cancel := context.WithCancel(qc.loopCtx) defer cancel() defer qc.loopWg.Done() log.Debug("QueryCoord start watch segment loop") watchChan := qc.kvClient.WatchWithRevision(handoffSegmentPrefix, qc.indexChecker.revision+1) for { select { case <-ctx.Done(): return case resp := <-watchChan: for _, event := range resp.Events { segmentInfo := &querypb.SegmentInfo{} err := proto.Unmarshal(event.Kv.Value, segmentInfo) if err != nil { log.Error("watchHandoffSegmentLoop: unmarshal failed", zap.Any("error", err.Error())) continue } switch event.Type { case mvccpb.PUT: validHandoffReq, _ := qc.indexChecker.verifyHandoffReqValid(segmentInfo) if Params.QueryCoordCfg.AutoHandoff && validHandoffReq { qc.indexChecker.enqueueHandoffReq(segmentInfo) log.Debug("watchHandoffSegmentLoop: enqueue a handoff request to index checker", zap.Any("segment info", segmentInfo)) } else { log.Debug("watchHandoffSegmentLoop: collection/partition has not been loaded or autoHandoff equal to false, remove req from etcd", zap.Any("segmentInfo", segmentInfo)) buildQuerySegmentPath := fmt.Sprintf("%s/%d/%d/%d", handoffSegmentPrefix, segmentInfo.CollectionID, segmentInfo.PartitionID, segmentInfo.SegmentID) err = qc.kvClient.Remove(buildQuerySegmentPath) if err != nil { log.Error("watchHandoffSegmentLoop: remove handoff segment from etcd failed", zap.Error(err)) panic(err) } } default: // do nothing } } } } } func (qc *QueryCoord) loadBalanceSegmentLoop() { ctx, cancel := context.WithCancel(qc.loopCtx) defer cancel() defer qc.loopWg.Done() log.Debug("QueryCoord start load balance segment loop") timer := time.NewTicker(time.Duration(Params.QueryCoordCfg.BalanceIntervalSeconds) * time.Second) for { select { case <-ctx.Done(): return case <-timer.C: onlineNodeIDs := qc.cluster.onlineNodeIDs() if len(onlineNodeIDs) == 0 { log.Error("loadBalanceSegmentLoop: there are no online QueryNode to balance") continue } // get mem info of online nodes from cluster nodeID2MemUsageRate := make(map[int64]float64) nodeID2MemUsage := make(map[int64]uint64) nodeID2TotalMem := make(map[int64]uint64) nodeID2SegmentInfos := make(map[int64]map[UniqueID]*querypb.SegmentInfo) var availableNodeIDs []int64 for _, nodeID := range onlineNodeIDs { nodeInfo, err := qc.cluster.getNodeInfoByID(nodeID) if err != nil { log.Warn("loadBalanceSegmentLoop: get node info from QueryNode failed", zap.Int64("nodeID", nodeID), zap.Error(err)) continue } updateSegmentInfoDone := true leastSegmentInfos := make(map[UniqueID]*querypb.SegmentInfo) segmentInfos := qc.meta.getSegmentInfosByNode(nodeID) for _, segmentInfo := range segmentInfos { leastInfo, err := qc.cluster.getSegmentInfoByID(ctx, segmentInfo.SegmentID) if err != nil { log.Warn("loadBalanceSegmentLoop: get segment info from QueryNode failed", zap.Int64("nodeID", nodeID), zap.Error(err)) updateSegmentInfoDone = false break } leastSegmentInfos[segmentInfo.SegmentID] = leastInfo } if updateSegmentInfoDone { nodeID2MemUsageRate[nodeID] = nodeInfo.(*queryNode).memUsageRate nodeID2MemUsage[nodeID] = nodeInfo.(*queryNode).memUsage nodeID2TotalMem[nodeID] = nodeInfo.(*queryNode).totalMem availableNodeIDs = append(availableNodeIDs, nodeID) nodeID2SegmentInfos[nodeID] = leastSegmentInfos } } log.Debug("loadBalanceSegmentLoop: memory usage rate of all online QueryNode", zap.Any("mem rate", nodeID2MemUsageRate)) if len(availableNodeIDs) <= 1 { log.Warn("loadBalanceSegmentLoop: there are too few available query nodes to balance", zap.Int64s("onlineNodeIDs", onlineNodeIDs), zap.Int64s("availableNodeIDs", availableNodeIDs)) continue } // check which nodes need balance and determine which segments on these nodes need to be migrated to other nodes memoryInsufficient := false loadBalanceTasks := make([]*loadBalanceTask, 0) for { sort.Slice(availableNodeIDs, func(i, j int) bool { return nodeID2MemUsageRate[availableNodeIDs[i]] > nodeID2MemUsageRate[availableNodeIDs[j]] }) // the memoryUsageRate of the sourceNode is higher than other query node sourceNodeID := availableNodeIDs[0] dstNodeID := availableNodeIDs[len(availableNodeIDs)-1] memUsageRateDiff := nodeID2MemUsageRate[sourceNodeID] - nodeID2MemUsageRate[dstNodeID] // if memoryUsageRate of source node is greater than 90%, and the max memUsageDiff is greater than 30% // then migrate the segments on source node to other query nodes if nodeID2MemUsageRate[sourceNodeID] > Params.QueryCoordCfg.OverloadedMemoryThresholdPercentage || memUsageRateDiff > Params.QueryCoordCfg.MemoryUsageMaxDifferencePercentage { segmentInfos := nodeID2SegmentInfos[sourceNodeID] // select the segment that needs balance on the source node selectedSegmentInfo, err := chooseSegmentToBalance(sourceNodeID, dstNodeID, segmentInfos, nodeID2MemUsage, nodeID2TotalMem, nodeID2MemUsageRate) if err != nil { // no enough memory on query nodes to balance, then notify proxy to stop insert memoryInsufficient = true break } // select a segment to balance successfully, then recursive traversal whether there are other segments that can balance if selectedSegmentInfo != nil { req := &querypb.LoadBalanceRequest{ Base: &commonpb.MsgBase{ MsgType: commonpb.MsgType_LoadBalanceSegments, }, BalanceReason: querypb.TriggerCondition_LoadBalance, SourceNodeIDs: []UniqueID{sourceNodeID}, DstNodeIDs: []UniqueID{dstNodeID}, SealedSegmentIDs: []UniqueID{selectedSegmentInfo.SegmentID}, } baseTask := newBaseTask(qc.loopCtx, querypb.TriggerCondition_LoadBalance) balanceTask := &loadBalanceTask{ baseTask: baseTask, LoadBalanceRequest: req, broker: qc.broker, cluster: qc.cluster, meta: qc.meta, } loadBalanceTasks = append(loadBalanceTasks, balanceTask) nodeID2MemUsage[sourceNodeID] -= uint64(selectedSegmentInfo.MemSize) nodeID2MemUsage[dstNodeID] += uint64(selectedSegmentInfo.MemSize) nodeID2MemUsageRate[sourceNodeID] = float64(nodeID2MemUsage[sourceNodeID]) / float64(nodeID2TotalMem[sourceNodeID]) nodeID2MemUsageRate[dstNodeID] = float64(nodeID2MemUsage[dstNodeID]) / float64(nodeID2TotalMem[dstNodeID]) delete(nodeID2SegmentInfos[sourceNodeID], selectedSegmentInfo.SegmentID) nodeID2SegmentInfos[dstNodeID][selectedSegmentInfo.SegmentID] = selectedSegmentInfo continue } else { // moving any segment will not improve the balance status break } } else { // all query node's memoryUsageRate is less than 90%, and the max memUsageDiff is less than 30% break } } if !memoryInsufficient { for _, t := range loadBalanceTasks { qc.scheduler.Enqueue(t) log.Debug("loadBalanceSegmentLoop: enqueue a loadBalance task", zap.Any("task", t)) err := t.waitToFinish() if err != nil { // if failed, wait for next balance loop // it may be that the collection/partition of the balanced segment has been released // it also may be other abnormal errors log.Error("loadBalanceSegmentLoop: balance task execute failed", zap.Any("task", t)) } else { log.Debug("loadBalanceSegmentLoop: balance task execute success", zap.Any("task", t)) } } log.Debug("loadBalanceSegmentLoop: load balance Done in this loop", zap.Any("tasks", loadBalanceTasks)) } else { // no enough memory on query nodes to balance, then notify proxy to stop insert //TODO:: xige-16 log.Error("loadBalanceSegmentLoop: QueryNode has insufficient memory, stop inserting data") } } } } func chooseSegmentToBalance(sourceNodeID int64, dstNodeID int64, segmentInfos map[UniqueID]*querypb.SegmentInfo, nodeID2MemUsage map[int64]uint64, nodeID2TotalMem map[int64]uint64, nodeID2MemUsageRate map[int64]float64) (*querypb.SegmentInfo, error) { memoryInsufficient := true minMemDiffPercentage := 1.0 var selectedSegmentInfo *querypb.SegmentInfo for _, info := range segmentInfos { dstNodeMemUsageAfterBalance := nodeID2MemUsage[dstNodeID] + uint64(info.MemSize) dstNodeMemUsageRateAfterBalance := float64(dstNodeMemUsageAfterBalance) / float64(nodeID2TotalMem[dstNodeID]) // if memUsageRate of dstNode is greater than OverloadedMemoryThresholdPercentage after balance, than can't balance if dstNodeMemUsageRateAfterBalance < Params.QueryCoordCfg.OverloadedMemoryThresholdPercentage { memoryInsufficient = false sourceNodeMemUsageAfterBalance := nodeID2MemUsage[sourceNodeID] - uint64(info.MemSize) sourceNodeMemUsageRateAfterBalance := float64(sourceNodeMemUsageAfterBalance) / float64(nodeID2TotalMem[sourceNodeID]) // assume all query node has same memory capacity // if the memUsageRateDiff between the two nodes does not become smaller after balance, there is no need for balance diffBeforBalance := nodeID2MemUsageRate[sourceNodeID] - nodeID2MemUsageRate[dstNodeID] diffAfterBalance := dstNodeMemUsageRateAfterBalance - sourceNodeMemUsageRateAfterBalance if diffAfterBalance < diffBeforBalance { if math.Abs(diffAfterBalance) < minMemDiffPercentage { selectedSegmentInfo = info } } } } if memoryInsufficient { return nil, errors.New("all QueryNode has insufficient memory") } return selectedSegmentInfo, nil }