提交 83bad1d7 编写于 作者: A Adrian Bunk 提交者: Linus Torvalds

scheduled OSS driver removal

This patch contains the scheduled removal of OSS drivers whose config
options have been removed in 2.6.23.
Signed-off-by: NAdrian Bunk <bunk@kernel.org>
Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
上级 b4cf9c34
......@@ -208,13 +208,6 @@ Who: Randy Dunlap <randy.dunlap@oracle.com>
---------------------------
What: drivers depending on OSS_OBSOLETE
When: options in 2.6.23, code in 2.6.25
Why: obsolete OSS drivers
Who: Adrian Bunk <bunk@stusta.de>
---------------------------
What: libata spindown skipping and warning
When: Dec 2008
Why: Some halt(8) implementations synchronize caches for and spin
......
......@@ -91,20 +91,11 @@ extern void prep_tiger1_setup_pci(char *irq_edge_mask_lo, char *irq_edge_mask_hi
#define cached_21 (((char *)(ppc_cached_irq_mask))[3])
#define cached_A1 (((char *)(ppc_cached_irq_mask))[2])
#ifdef CONFIG_SOUND_CS4232
long ppc_cs4232_dma, ppc_cs4232_dma2;
#endif
extern PTE *Hash, *Hash_end;
extern unsigned long Hash_size, Hash_mask;
extern int probingmem;
extern unsigned long loops_per_jiffy;
#ifdef CONFIG_SOUND_CS4232
EXPORT_SYMBOL(ppc_cs4232_dma);
EXPORT_SYMBOL(ppc_cs4232_dma2);
#endif
/* useful ISA ports */
#define PREP_SYSCTL 0x81c
/* present in the IBM reference design; possibly identical in Mot boxes: */
......@@ -569,74 +560,6 @@ prep_show_percpuinfo(struct seq_file *m, int i)
return 0;
}
#ifdef CONFIG_SOUND_CS4232
static long __init masktoint(unsigned int i)
{
int t = -1;
while (i >> ++t)
;
return (t-1);
}
/*
* ppc_cs4232_dma and ppc_cs4232_dma2 are used in include/asm/dma.h
* to distinguish sound dma-channels from others. This is because
* blocksize on 16 bit dma-channels 5,6,7 is 128k, but
* the cs4232.c uses 64k like on 8 bit dma-channels 0,1,2,3
*/
static void __init prep_init_sound(void)
{
PPC_DEVICE *audiodevice = NULL;
/*
* Get the needed resource information from residual data.
*
*/
if (have_residual_data)
audiodevice = residual_find_device(~0, NULL,
MultimediaController, AudioController, -1, 0);
if (audiodevice != NULL) {
PnP_TAG_PACKET *pkt;
pkt = PnP_find_packet((unsigned char *)&res->DevicePnPHeap[audiodevice->AllocatedOffset],
S5_Packet, 0);
if (pkt != NULL)
ppc_cs4232_dma = masktoint(pkt->S5_Pack.DMAMask);
pkt = PnP_find_packet((unsigned char*)&res->DevicePnPHeap[audiodevice->AllocatedOffset],
S5_Packet, 1);
if (pkt != NULL)
ppc_cs4232_dma2 = masktoint(pkt->S5_Pack.DMAMask);
}
/*
* These are the PReP specs' defaults for the cs4231. We use these
* as fallback incase we don't have residual data.
* At least the IBM Thinkpad 850 with IDE DMA Channels at 6 and 7
* will use the other values.
*/
if (audiodevice == NULL) {
switch (_prep_type) {
case _PREP_IBM:
ppc_cs4232_dma = 1;
ppc_cs4232_dma2 = -1;
break;
default:
ppc_cs4232_dma = 6;
ppc_cs4232_dma2 = 7;
}
}
/*
* Find a way to push this information to the cs4232 driver
* Give it out with printk, when not in cmd_line?
* Append it to cmd_line and boot_command_line?
* Format is cs4232=io,irq,dma,dma2
*/
}
#endif /* CONFIG_SOUND_CS4232 */
/*
* Fill out screen_info according to the residual data. This allows us to use
* at least vesafb.
......@@ -898,10 +821,6 @@ prep_setup_arch(void)
}
}
#ifdef CONFIG_SOUND_CS4232
prep_init_sound();
#endif /* CONFIG_SOUND_CS4232 */
prep_init_vesa();
switch (_prep_type) {
......
......@@ -22,7 +22,6 @@ obj-$(CONFIG_VIDEO_IR_I2C) += ir-kbd-i2c.o
obj-$(CONFIG_VIDEO_TVAUDIO) += tvaudio.o
obj-$(CONFIG_VIDEO_TDA7432) += tda7432.o
obj-$(CONFIG_VIDEO_TDA9875) += tda9875.o
obj-$(CONFIG_SOUND_TVMIXER) += tvmixer.o
obj-$(CONFIG_VIDEO_SAA6588) += saa6588.o
obj-$(CONFIG_VIDEO_SAA5246A) += saa5246a.o
......
/*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/videodev.h>
#include <linux/init.h>
#include <linux/kdev_t.h>
#include <linux/sound.h>
#include <linux/soundcard.h>
#include <asm/semaphore.h>
#include <asm/uaccess.h>
#define DEV_MAX 4
static int devnr = -1;
module_param(devnr, int, 0644);
MODULE_AUTHOR("Gerd Knorr");
MODULE_LICENSE("GPL");
/* ----------------------------------------------------------------------- */
struct TVMIXER {
struct i2c_client *dev;
int minor;
int count;
};
static struct TVMIXER devices[DEV_MAX];
static int tvmixer_adapters(struct i2c_adapter *adap);
static int tvmixer_clients(struct i2c_client *client);
/* ----------------------------------------------------------------------- */
static int mix_to_v4l(int i)
{
int r;
r = ((i & 0xff) * 65536 + 50) / 100;
if (r > 65535) r = 65535;
if (r < 0) r = 0;
return r;
}
static int v4l_to_mix(int i)
{
int r;
r = (i * 100 + 32768) / 65536;
if (r > 100) r = 100;
if (r < 0) r = 0;
return r | (r << 8);
}
static int v4l_to_mix2(int l, int r)
{
r = (r * 100 + 32768) / 65536;
if (r > 100) r = 100;
if (r < 0) r = 0;
l = (l * 100 + 32768) / 65536;
if (l > 100) l = 100;
if (l < 0) l = 0;
return (r << 8) | l;
}
static int tvmixer_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
{
struct video_audio va;
int left,right,ret,val = 0;
struct TVMIXER *mix = file->private_data;
struct i2c_client *client = mix->dev;
void __user *argp = (void __user *)arg;
int __user *p = argp;
if (NULL == client)
return -ENODEV;
if (cmd == SOUND_MIXER_INFO) {
mixer_info info;
strlcpy(info.id, "tv card", sizeof(info.id));
strlcpy(info.name, client->name, sizeof(info.name));
info.modify_counter = 42 /* FIXME */;
if (copy_to_user(argp, &info, sizeof(info)))
return -EFAULT;
return 0;
}
if (cmd == SOUND_OLD_MIXER_INFO) {
_old_mixer_info info;
strlcpy(info.id, "tv card", sizeof(info.id));
strlcpy(info.name, client->name, sizeof(info.name));
if (copy_to_user(argp, &info, sizeof(info)))
return -EFAULT;
return 0;
}
if (cmd == OSS_GETVERSION)
return put_user(SOUND_VERSION, p);
if (_SIOC_DIR(cmd) & _SIOC_WRITE)
if (get_user(val, p))
return -EFAULT;
/* read state */
memset(&va,0,sizeof(va));
client->driver->command(client,VIDIOCGAUDIO,&va);
switch (cmd) {
case MIXER_READ(SOUND_MIXER_RECMASK):
case MIXER_READ(SOUND_MIXER_CAPS):
case MIXER_READ(SOUND_MIXER_RECSRC):
case MIXER_WRITE(SOUND_MIXER_RECSRC):
ret = 0;
break;
case MIXER_READ(SOUND_MIXER_STEREODEVS):
ret = SOUND_MASK_VOLUME;
break;
case MIXER_READ(SOUND_MIXER_DEVMASK):
ret = SOUND_MASK_VOLUME;
if (va.flags & VIDEO_AUDIO_BASS)
ret |= SOUND_MASK_BASS;
if (va.flags & VIDEO_AUDIO_TREBLE)
ret |= SOUND_MASK_TREBLE;
break;
case MIXER_WRITE(SOUND_MIXER_VOLUME):
left = mix_to_v4l(val);
right = mix_to_v4l(val >> 8);
va.volume = max(left,right);
va.balance = (32768*min(left,right)) / (va.volume ? va.volume : 1);
va.balance = (left<right) ? (65535-va.balance) : va.balance;
if (va.volume)
va.flags &= ~VIDEO_AUDIO_MUTE;
client->driver->command(client,VIDIOCSAUDIO,&va);
client->driver->command(client,VIDIOCGAUDIO,&va);
/* fall throuth */
case MIXER_READ(SOUND_MIXER_VOLUME):
left = (min(65536 - va.balance,32768) *
va.volume) / 32768;
right = (min(va.balance,(u16)32768) *
va.volume) / 32768;
ret = v4l_to_mix2(left,right);
break;
case MIXER_WRITE(SOUND_MIXER_BASS):
va.bass = mix_to_v4l(val);
client->driver->command(client,VIDIOCSAUDIO,&va);
client->driver->command(client,VIDIOCGAUDIO,&va);
/* fall throuth */
case MIXER_READ(SOUND_MIXER_BASS):
ret = v4l_to_mix(va.bass);
break;
case MIXER_WRITE(SOUND_MIXER_TREBLE):
va.treble = mix_to_v4l(val);
client->driver->command(client,VIDIOCSAUDIO,&va);
client->driver->command(client,VIDIOCGAUDIO,&va);
/* fall throuth */
case MIXER_READ(SOUND_MIXER_TREBLE):
ret = v4l_to_mix(va.treble);
break;
default:
return -EINVAL;
}
if (put_user(ret, p))
return -EFAULT;
return 0;
}
static int tvmixer_open(struct inode *inode, struct file *file)
{
int i, minor = iminor(inode);
struct TVMIXER *mix = NULL;
struct i2c_client *client = NULL;
for (i = 0; i < DEV_MAX; i++) {
if (devices[i].minor == minor) {
mix = devices+i;
client = mix->dev;
break;
}
}
if (NULL == client)
return -ENODEV;
/* lock bttv in memory while the mixer is in use */
file->private_data = mix;
if (client->adapter->owner)
try_module_get(client->adapter->owner);
return 0;
}
static int tvmixer_release(struct inode *inode, struct file *file)
{
struct TVMIXER *mix = file->private_data;
struct i2c_client *client;
client = mix->dev;
if (NULL == client) {
return -ENODEV;
}
module_put(client->adapter->owner);
return 0;
}
static struct i2c_driver driver = {
.driver = {
.name = "tvmixer",
},
.id = I2C_DRIVERID_TVMIXER,
.detach_adapter = tvmixer_adapters,
.attach_adapter = tvmixer_adapters,
.detach_client = tvmixer_clients,
};
static const struct file_operations tvmixer_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.ioctl = tvmixer_ioctl,
.open = tvmixer_open,
.release = tvmixer_release,
};
/* ----------------------------------------------------------------------- */
static int tvmixer_adapters(struct i2c_adapter *adap)
{
struct i2c_client *client;
list_for_each_entry(client, &adap->clients, list)
tvmixer_clients(client);
return 0;
}
static int tvmixer_clients(struct i2c_client *client)
{
struct video_audio va;
int i,minor;
if (!(client->adapter->class & I2C_CLASS_TV_ANALOG))
return -1;
/* unregister ?? */
for (i = 0; i < DEV_MAX; i++) {
if (devices[i].dev == client) {
/* unregister */
unregister_sound_mixer(devices[i].minor);
devices[i].dev = NULL;
devices[i].minor = -1;
printk("tvmixer: %s unregistered (#1)\n",
client->name);
return 0;
}
}
/* look for a free slot */
for (i = 0; i < DEV_MAX; i++)
if (NULL == devices[i].dev)
break;
if (i == DEV_MAX) {
printk(KERN_WARNING "tvmixer: DEV_MAX too small\n");
return -1;
}
/* audio chip with mixer ??? */
if (NULL == client->driver->command)
return -1;
memset(&va,0,sizeof(va));
if (0 != client->driver->command(client,VIDIOCGAUDIO,&va))
return -1;
if (0 == (va.flags & VIDEO_AUDIO_VOLUME))
return -1;
/* everything is fine, register */
if ((minor = register_sound_mixer(&tvmixer_fops,devnr)) < 0) {
printk(KERN_ERR "tvmixer: cannot allocate mixer device\n");
return -1;
}
devices[i].minor = minor;
devices[i].count = 0;
devices[i].dev = client;
printk("tvmixer: %s (%s) registered with minor %d\n",
client->name,client->adapter->name,minor);
return 0;
}
/* ----------------------------------------------------------------------- */
static int __init tvmixer_init_module(void)
{
int i;
for (i = 0; i < DEV_MAX; i++)
devices[i].minor = -1;
return i2c_add_driver(&driver);
}
static void __exit tvmixer_cleanup_module(void)
{
int i;
i2c_del_driver(&driver);
for (i = 0; i < DEV_MAX; i++) {
if (devices[i].minor != -1) {
unregister_sound_mixer(devices[i].minor);
printk("tvmixer: %s unregistered (#2)\n",
devices[i].dev->name);
}
}
}
module_init(tvmixer_init_module);
module_exit(tvmixer_cleanup_module);
/*
* Overrides for Emacs so that we follow Linus's tabbing style.
* ---------------------------------------------------------------------------
* Local variables:
* c-basic-offset: 8
* End:
*/
......@@ -93,16 +93,6 @@
*
*/
/* see prep_setup_arch() for detailed informations */
#if defined(CONFIG_SOUND_CS4232) && defined(CONFIG_PPC_PREP)
extern long ppc_cs4232_dma, ppc_cs4232_dma2;
#define SND_DMA1 ppc_cs4232_dma
#define SND_DMA2 ppc_cs4232_dma2
#else
#define SND_DMA1 -1
#define SND_DMA2 -1
#endif
/* 8237 DMA controllers */
#define IO_DMA1_BASE 0x00 /* 8 bit slave DMA, channels 0..3 */
#define IO_DMA2_BASE 0xC0 /* 16 bit master DMA, ch 4(=slave input)..7 */
......@@ -269,24 +259,15 @@ static __inline__ void set_dma_page(unsigned int dmanr, int pagenr)
dma_outb(pagenr >> 8, DMA_HI_PAGE_3);
break;
case 5:
if (SND_DMA1 == 5 || SND_DMA2 == 5)
dma_outb(pagenr, DMA_LO_PAGE_5);
else
dma_outb(pagenr & 0xfe, DMA_LO_PAGE_5);
dma_outb(pagenr & 0xfe, DMA_LO_PAGE_5);
dma_outb(pagenr >> 8, DMA_HI_PAGE_5);
break;
case 6:
if (SND_DMA1 == 6 || SND_DMA2 == 6)
dma_outb(pagenr, DMA_LO_PAGE_6);
else
dma_outb(pagenr & 0xfe, DMA_LO_PAGE_6);
dma_outb(pagenr & 0xfe, DMA_LO_PAGE_6);
dma_outb(pagenr >> 8, DMA_HI_PAGE_6);
break;
case 7:
if (SND_DMA1 == 7 || SND_DMA2 == 7)
dma_outb(pagenr, DMA_LO_PAGE_7);
else
dma_outb(pagenr & 0xfe, DMA_LO_PAGE_7);
dma_outb(pagenr & 0xfe, DMA_LO_PAGE_7);
dma_outb(pagenr >> 8, DMA_HI_PAGE_7);
break;
}
......@@ -302,12 +283,6 @@ static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int phys)
((dmanr & 3) << 1) + IO_DMA1_BASE);
dma_outb((phys >> 8) & 0xff,
((dmanr & 3) << 1) + IO_DMA1_BASE);
} else if (dmanr == SND_DMA1 || dmanr == SND_DMA2) {
dma_outb(phys & 0xff,
((dmanr & 3) << 2) + IO_DMA2_BASE);
dma_outb((phys >> 8) & 0xff,
((dmanr & 3) << 2) + IO_DMA2_BASE);
dma_outb((dmanr & 3), DMA2_EXT_REG);
} else {
dma_outb((phys >> 1) & 0xff,
((dmanr & 3) << 2) + IO_DMA2_BASE);
......@@ -334,11 +309,6 @@ static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
((dmanr & 3) << 1) + 1 + IO_DMA1_BASE);
dma_outb((count >> 8) & 0xff,
((dmanr & 3) << 1) + 1 + IO_DMA1_BASE);
} else if (dmanr == SND_DMA1 || dmanr == SND_DMA2) {
dma_outb(count & 0xff,
((dmanr & 3) << 2) + 2 + IO_DMA2_BASE);
dma_outb((count >> 8) & 0xff,
((dmanr & 3) << 2) + 2 + IO_DMA2_BASE);
} else {
dma_outb((count >> 1) & 0xff,
((dmanr & 3) << 2) + 2 + IO_DMA2_BASE);
......@@ -368,8 +338,7 @@ static __inline__ int get_dma_residue(unsigned int dmanr)
count = 1 + dma_inb(io_port);
count += dma_inb(io_port) << 8;
return (dmanr <= 3 || dmanr == SND_DMA1 || dmanr == SND_DMA2)
? count : (count << 1);
return (dmanr <= 3) ? count : (count << 1);
}
/* These are in kernel/dma.c: */
......
......@@ -326,11 +326,7 @@ struct ac97_ops
#define AC97_DEFAULT_POWER_OFF 4 /* Needs warm reset to power up */
};
extern int ac97_read_proc (char *page_out, char **start, off_t off,
int count, int *eof, void *data);
extern int ac97_probe_codec(struct ac97_codec *);
extern unsigned int ac97_set_adc_rate(struct ac97_codec *codec, unsigned int rate);
extern unsigned int ac97_set_dac_rate(struct ac97_codec *codec, unsigned int rate);
extern struct ac97_codec *ac97_alloc_codec(void);
extern void ac97_release_codec(struct ac97_codec *codec);
......@@ -363,7 +359,4 @@ struct ac97_quirk {
int type; /* quirk type above */
};
struct pci_dev;
extern int ac97_tune_hardware(struct pci_dev *pdev, struct ac97_quirk *quirk, int override);
#endif /* _AC97_CODEC_H_ */
......@@ -6,7 +6,6 @@
# Each configuration option enables a list of files.
obj-$(CONFIG_SOUND_OSS) += sound.o
obj-$(CONFIG_SOUND_CS4232) += cs4232.o ad1848.o
# Please leave it as is, cause the link order is significant !
......@@ -16,7 +15,6 @@ obj-$(CONFIG_SOUND_AEDSP16) += aedsp16.o
obj-$(CONFIG_SOUND_PSS) += pss.o ad1848.o mpu401.o
obj-$(CONFIG_SOUND_TRIX) += trix.o ad1848.o sb_lib.o uart401.o
obj-$(CONFIG_SOUND_SSCAPE) += sscape.o ad1848.o mpu401.o
obj-$(CONFIG_SOUND_CS4232) += cs4232.o uart401.o
obj-$(CONFIG_SOUND_MSS) += ad1848.o
obj-$(CONFIG_SOUND_PAS) += pas2.o sb.o sb_lib.o uart401.o
obj-$(CONFIG_SOUND_SB) += sb.o sb_lib.o uart401.o
......@@ -27,19 +25,12 @@ obj-$(CONFIG_SOUND_YM3812) += opl3.o
obj-$(CONFIG_SOUND_VMIDI) += v_midi.o
obj-$(CONFIG_SOUND_VIDC) += vidc_mod.o
obj-$(CONFIG_SOUND_WAVEARTIST) += waveartist.o
obj-$(CONFIG_SOUND_VIA82CXXX) += via82cxxx_audio.o ac97_codec.o
ifeq ($(CONFIG_MIDI_VIA82CXXX),y)
obj-$(CONFIG_SOUND_VIA82CXXX) += sound.o uart401.o
endif
obj-$(CONFIG_SOUND_MSNDCLAS) += msnd.o msnd_classic.o
obj-$(CONFIG_SOUND_MSNDPIN) += msnd.o msnd_pinnacle.o
obj-$(CONFIG_SOUND_VWSND) += vwsnd.o
obj-$(CONFIG_SOUND_ICH) += i810_audio.o ac97_codec.o
obj-$(CONFIG_SOUND_AU1550_AC97) += au1550_ac97.o ac97_codec.o
obj-$(CONFIG_SOUND_TRIDENT) += trident.o ac97_codec.o
obj-$(CONFIG_SOUND_BCM_CS4297A) += swarm_cs4297a.o
obj-$(CONFIG_SOUND_BT878) += btaudio.o
obj-$(CONFIG_SOUND_WM97XX) += ac97_plugin_wm97xx.o
......
......@@ -189,42 +189,6 @@ static const struct {
{0x57454301, "Winbond 83971D", &null_ops},
};
static const char *ac97_stereo_enhancements[] =
{
/* 0 */ "No 3D Stereo Enhancement",
/* 1 */ "Analog Devices Phat Stereo",
/* 2 */ "Creative Stereo Enhancement",
/* 3 */ "National Semi 3D Stereo Enhancement",
/* 4 */ "YAMAHA Ymersion",
/* 5 */ "BBE 3D Stereo Enhancement",
/* 6 */ "Crystal Semi 3D Stereo Enhancement",
/* 7 */ "Qsound QXpander",
/* 8 */ "Spatializer 3D Stereo Enhancement",
/* 9 */ "SRS 3D Stereo Enhancement",
/* 10 */ "Platform Tech 3D Stereo Enhancement",
/* 11 */ "AKM 3D Audio",
/* 12 */ "Aureal Stereo Enhancement",
/* 13 */ "Aztech 3D Enhancement",
/* 14 */ "Binaura 3D Audio Enhancement",
/* 15 */ "ESS Technology Stereo Enhancement",
/* 16 */ "Harman International VMAx",
/* 17 */ "Nvidea 3D Stereo Enhancement",
/* 18 */ "Philips Incredible Sound",
/* 19 */ "Texas Instruments 3D Stereo Enhancement",
/* 20 */ "VLSI Technology 3D Stereo Enhancement",
/* 21 */ "TriTech 3D Stereo Enhancement",
/* 22 */ "Realtek 3D Stereo Enhancement",
/* 23 */ "Samsung 3D Stereo Enhancement",
/* 24 */ "Wolfson Microelectronics 3D Enhancement",
/* 25 */ "Delta Integration 3D Enhancement",
/* 26 */ "SigmaTel 3D Enhancement",
/* 27 */ "Winbond 3D Stereo Enhancement",
/* 28 */ "Rockwell 3D Stereo Enhancement",
/* 29 */ "Reserved 29",
/* 30 */ "Reserved 30",
/* 31 */ "Reserved 31"
};
/* this table has default mixer values for all OSS mixers. */
static struct mixer_defaults {
int mixer;
......@@ -614,83 +578,6 @@ static int ac97_mixer_ioctl(struct ac97_codec *codec, unsigned int cmd, unsigned
return -EINVAL;
}
/* entry point for /proc/driver/controller_vendor/ac97/%d */
int ac97_read_proc (char *page, char **start, off_t off,
int count, int *eof, void *data)
{
int len = 0, cap, extid, val, id1, id2;
struct ac97_codec *codec;
int is_ac97_20 = 0;
if ((codec = data) == NULL)
return -ENODEV;
id1 = codec->codec_read(codec, AC97_VENDOR_ID1);
id2 = codec->codec_read(codec, AC97_VENDOR_ID2);
len += sprintf (page+len, "Vendor name : %s\n", codec->name);
len += sprintf (page+len, "Vendor id : %04X %04X\n", id1, id2);
extid = codec->codec_read(codec, AC97_EXTENDED_ID);
extid &= ~((1<<2)|(1<<4)|(1<<5)|(1<<10)|(1<<11)|(1<<12)|(1<<13));
len += sprintf (page+len, "AC97 Version : %s\n",
extid ? "2.0 or later" : "1.0");
if (extid) is_ac97_20 = 1;
cap = codec->codec_read(codec, AC97_RESET);
len += sprintf (page+len, "Capabilities :%s%s%s%s%s%s\n",
cap & 0x0001 ? " -dedicated MIC PCM IN channel-" : "",
cap & 0x0002 ? " -reserved1-" : "",
cap & 0x0004 ? " -bass & treble-" : "",
cap & 0x0008 ? " -simulated stereo-" : "",
cap & 0x0010 ? " -headphone out-" : "",
cap & 0x0020 ? " -loudness-" : "");
val = cap & 0x00c0;
len += sprintf (page+len, "DAC resolutions :%s%s%s\n",
" -16-bit-",
val & 0x0040 ? " -18-bit-" : "",
val & 0x0080 ? " -20-bit-" : "");
val = cap & 0x0300;
len += sprintf (page+len, "ADC resolutions :%s%s%s\n",
" -16-bit-",
val & 0x0100 ? " -18-bit-" : "",
val & 0x0200 ? " -20-bit-" : "");
len += sprintf (page+len, "3D enhancement : %s\n",
ac97_stereo_enhancements[(cap >> 10) & 0x1f]);
val = codec->codec_read(codec, AC97_GENERAL_PURPOSE);
len += sprintf (page+len, "POP path : %s 3D\n"
"Sim. stereo : %s\n"
"3D enhancement : %s\n"
"Loudness : %s\n"
"Mono output : %s\n"
"MIC select : %s\n"
"ADC/DAC loopback : %s\n",
val & 0x8000 ? "post" : "pre",
val & 0x4000 ? "on" : "off",
val & 0x2000 ? "on" : "off",
val & 0x1000 ? "on" : "off",
val & 0x0200 ? "MIC" : "MIX",
val & 0x0100 ? "MIC2" : "MIC1",
val & 0x0080 ? "on" : "off");
extid = codec->codec_read(codec, AC97_EXTENDED_ID);
cap = extid;
len += sprintf (page+len, "Ext Capabilities :%s%s%s%s%s%s%s\n",
cap & 0x0001 ? " -var rate PCM audio-" : "",
cap & 0x0002 ? " -2x PCM audio out-" : "",
cap & 0x0008 ? " -var rate MIC in-" : "",
cap & 0x0040 ? " -PCM center DAC-" : "",
cap & 0x0080 ? " -PCM surround DAC-" : "",
cap & 0x0100 ? " -PCM LFE DAC-" : "",
cap & 0x0200 ? " -slot/DAC mappings-" : "");
if (is_ac97_20) {
len += sprintf (page+len, "Front DAC rate : %d\n",
codec->codec_read(codec, AC97_PCM_FRONT_DAC_RATE));
}
return len;
}
/**
* codec_id - Turn id1/id2 into a PnP string
* @id1: Vendor ID1
......@@ -1313,176 +1200,5 @@ static int pt101_init(struct ac97_codec * codec)
#endif
EXPORT_SYMBOL(ac97_read_proc);
EXPORT_SYMBOL(ac97_probe_codec);
/*
* AC97 library support routines
*/
/**
* ac97_set_dac_rate - set codec rate adaption
* @codec: ac97 code
* @rate: rate in hertz
*
* Set the DAC rate. Assumes the codec supports VRA. The caller is
* expected to have checked this little detail.
*/
unsigned int ac97_set_dac_rate(struct ac97_codec *codec, unsigned int rate)
{
unsigned int new_rate = rate;
u32 dacp;
u32 mast_vol, phone_vol, mono_vol, pcm_vol;
u32 mute_vol = 0x8000; /* The mute volume? */
if(rate != codec->codec_read(codec, AC97_PCM_FRONT_DAC_RATE))
{
/* Mute several registers */
mast_vol = codec->codec_read(codec, AC97_MASTER_VOL_STEREO);
mono_vol = codec->codec_read(codec, AC97_MASTER_VOL_MONO);
phone_vol = codec->codec_read(codec, AC97_HEADPHONE_VOL);
pcm_vol = codec->codec_read(codec, AC97_PCMOUT_VOL);
codec->codec_write(codec, AC97_MASTER_VOL_STEREO, mute_vol);
codec->codec_write(codec, AC97_MASTER_VOL_MONO, mute_vol);
codec->codec_write(codec, AC97_HEADPHONE_VOL, mute_vol);
codec->codec_write(codec, AC97_PCMOUT_VOL, mute_vol);
/* Power down the DAC */
dacp=codec->codec_read(codec, AC97_POWER_CONTROL);
codec->codec_write(codec, AC97_POWER_CONTROL, dacp|0x0200);
/* Load the rate and read the effective rate */
codec->codec_write(codec, AC97_PCM_FRONT_DAC_RATE, rate);
new_rate=codec->codec_read(codec, AC97_PCM_FRONT_DAC_RATE);
/* Power it back up */
codec->codec_write(codec, AC97_POWER_CONTROL, dacp);
/* Restore volumes */
codec->codec_write(codec, AC97_MASTER_VOL_STEREO, mast_vol);
codec->codec_write(codec, AC97_MASTER_VOL_MONO, mono_vol);
codec->codec_write(codec, AC97_HEADPHONE_VOL, phone_vol);
codec->codec_write(codec, AC97_PCMOUT_VOL, pcm_vol);
}
return new_rate;
}
EXPORT_SYMBOL(ac97_set_dac_rate);
/**
* ac97_set_adc_rate - set codec rate adaption
* @codec: ac97 code
* @rate: rate in hertz
*
* Set the ADC rate. Assumes the codec supports VRA. The caller is
* expected to have checked this little detail.
*/
unsigned int ac97_set_adc_rate(struct ac97_codec *codec, unsigned int rate)
{
unsigned int new_rate = rate;
u32 dacp;
if(rate != codec->codec_read(codec, AC97_PCM_LR_ADC_RATE))
{
/* Power down the ADC */
dacp=codec->codec_read(codec, AC97_POWER_CONTROL);
codec->codec_write(codec, AC97_POWER_CONTROL, dacp|0x0100);
/* Load the rate and read the effective rate */
codec->codec_write(codec, AC97_PCM_LR_ADC_RATE, rate);
new_rate=codec->codec_read(codec, AC97_PCM_LR_ADC_RATE);
/* Power it back up */
codec->codec_write(codec, AC97_POWER_CONTROL, dacp);
}
return new_rate;
}
EXPORT_SYMBOL(ac97_set_adc_rate);
static int swap_headphone(int remove_master)
{
struct list_head *l;
struct ac97_codec *c;
if (remove_master) {
mutex_lock(&codec_mutex);
list_for_each(l, &codecs)
{
c = list_entry(l, struct ac97_codec, list);
if (supported_mixer(c, SOUND_MIXER_PHONEOUT))
c->supported_mixers &= ~SOUND_MASK_PHONEOUT;
}
mutex_unlock(&codec_mutex);
} else
ac97_hw[SOUND_MIXER_PHONEOUT].offset = AC97_MASTER_VOL_STEREO;
/* Scale values already match */
ac97_hw[SOUND_MIXER_VOLUME].offset = AC97_MASTER_VOL_MONO;
return 0;
}
static int apply_quirk(int quirk)
{
switch (quirk) {
case AC97_TUNE_NONE:
return 0;
case AC97_TUNE_HP_ONLY:
return swap_headphone(1);
case AC97_TUNE_SWAP_HP:
return swap_headphone(0);
case AC97_TUNE_SWAP_SURROUND:
return -ENOSYS; /* not yet implemented */
case AC97_TUNE_AD_SHARING:
return -ENOSYS; /* not yet implemented */
case AC97_TUNE_ALC_JACK:
return -ENOSYS; /* not yet implemented */
}
return -EINVAL;
}
/**
* ac97_tune_hardware - tune up the hardware
* @pdev: pci_dev pointer
* @quirk: quirk list
* @override: explicit quirk value (overrides if not AC97_TUNE_DEFAULT)
*
* Do some workaround for each pci device, such as renaming of the
* headphone (true line-out) control as "Master".
* The quirk-list must be terminated with a zero-filled entry.
*
* Returns zero if successful, or a negative error code on failure.
*/
int ac97_tune_hardware(struct pci_dev *pdev, struct ac97_quirk *quirk, int override)
{
int result;
if (!quirk)
return -EINVAL;
if (override != AC97_TUNE_DEFAULT) {
result = apply_quirk(override);
if (result < 0)
printk(KERN_ERR "applying quirk type %d failed (%d)\n", override, result);
return result;
}
for (; quirk->vendor; quirk++) {
if (quirk->vendor != pdev->subsystem_vendor)
continue;
if ((! quirk->mask && quirk->device == pdev->subsystem_device) ||
quirk->device == (quirk->mask & pdev->subsystem_device)) {
#ifdef DEBUG
printk("ac97 quirk for %s (%04x:%04x)\n", quirk->name, ac97->subsystem_vendor, pdev->subsystem_device);
#endif
result = apply_quirk(quirk->type);
if (result < 0)
printk(KERN_ERR "applying quirk type %d for %s failed (%d)\n", quirk->type, quirk->name, result);
return result;
}
}
return 0;
}
EXPORT_SYMBOL_GPL(ac97_tune_hardware);
MODULE_LICENSE("GPL");
/*
btaudio - bt878 audio dma driver for linux 2.4.x
(c) 2000-2002 Gerd Knorr <kraxel@bytesex.org>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/pci.h>
#include <linux/sched.h>
#include <linux/signal.h>
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/poll.h>
#include <linux/sound.h>
#include <linux/soundcard.h>
#include <linux/slab.h>
#include <linux/kdev_t.h>
#include <linux/mutex.h>
#include <asm/uaccess.h>
#include <asm/io.h>
/* mmio access */
#define btwrite(dat,adr) writel((dat), (bta->mmio+(adr)))
#define btread(adr) readl(bta->mmio+(adr))
#define btand(dat,adr) btwrite((dat) & btread(adr), adr)
#define btor(dat,adr) btwrite((dat) | btread(adr), adr)
#define btaor(dat,mask,adr) btwrite((dat) | ((mask) & btread(adr)), adr)
/* registers (shifted because bta->mmio is long) */
#define REG_INT_STAT (0x100 >> 2)
#define REG_INT_MASK (0x104 >> 2)
#define REG_GPIO_DMA_CTL (0x10c >> 2)
#define REG_PACKET_LEN (0x110 >> 2)
#define REG_RISC_STRT_ADD (0x114 >> 2)
#define REG_RISC_COUNT (0x120 >> 2)
/* IRQ bits - REG_INT_(STAT|MASK) */
#define IRQ_SCERR (1 << 19)
#define IRQ_OCERR (1 << 18)
#define IRQ_PABORT (1 << 17)
#define IRQ_RIPERR (1 << 16)
#define IRQ_PPERR (1 << 15)
#define IRQ_FDSR (1 << 14)
#define IRQ_FTRGT (1 << 13)
#define IRQ_FBUS (1 << 12)
#define IRQ_RISCI (1 << 11)
#define IRQ_OFLOW (1 << 3)
#define IRQ_BTAUDIO (IRQ_SCERR | IRQ_OCERR | IRQ_PABORT | IRQ_RIPERR |\
IRQ_PPERR | IRQ_FDSR | IRQ_FTRGT | IRQ_FBUS |\
IRQ_RISCI)
/* REG_GPIO_DMA_CTL bits */
#define DMA_CTL_A_PWRDN (1 << 26)
#define DMA_CTL_DA_SBR (1 << 14)
#define DMA_CTL_DA_ES2 (1 << 13)
#define DMA_CTL_ACAP_EN (1 << 4)
#define DMA_CTL_RISC_EN (1 << 1)
#define DMA_CTL_FIFO_EN (1 << 0)
/* RISC instructions */
#define RISC_WRITE (0x01 << 28)
#define RISC_JUMP (0x07 << 28)
#define RISC_SYNC (0x08 << 28)
/* RISC bits */
#define RISC_WR_SOL (1 << 27)
#define RISC_WR_EOL (1 << 26)
#define RISC_IRQ (1 << 24)
#define RISC_SYNC_RESYNC (1 << 15)
#define RISC_SYNC_FM1 0x06
#define RISC_SYNC_VRO 0x0c
#define HWBASE_AD (448000)
/* -------------------------------------------------------------- */
struct btaudio {
/* linked list */
struct btaudio *next;
/* device info */
int dsp_digital;
int dsp_analog;
int mixer_dev;
struct pci_dev *pci;
unsigned int irq;
unsigned long mem;
unsigned long __iomem *mmio;
/* locking */
int users;
struct mutex lock;
/* risc instructions */
unsigned int risc_size;
unsigned long *risc_cpu;
dma_addr_t risc_dma;
/* audio data */
unsigned int buf_size;
unsigned char *buf_cpu;
dma_addr_t buf_dma;
/* buffer setup */
int line_bytes;
int line_count;
int block_bytes;
int block_count;
/* read fifo management */
int recording;
int dma_block;
int read_offset;
int read_count;
wait_queue_head_t readq;
/* settings */
int gain[3];
int source;
int bits;
int decimation;
int mixcount;
int sampleshift;
int channels;
int analog;
int rate;
};
struct cardinfo {
char *name;
int rate;
};
static struct btaudio *btaudios;
static unsigned int debug;
static unsigned int irq_debug;
/* -------------------------------------------------------------- */
#define BUF_DEFAULT 128*1024
#define BUF_MIN 8192
static int alloc_buffer(struct btaudio *bta)
{
if (NULL == bta->buf_cpu) {
for (bta->buf_size = BUF_DEFAULT; bta->buf_size >= BUF_MIN;
bta->buf_size = bta->buf_size >> 1) {
bta->buf_cpu = pci_alloc_consistent
(bta->pci, bta->buf_size, &bta->buf_dma);
if (NULL != bta->buf_cpu)
break;
}
if (NULL == bta->buf_cpu)
return -ENOMEM;
memset(bta->buf_cpu,0,bta->buf_size);
}
if (NULL == bta->risc_cpu) {
bta->risc_size = PAGE_SIZE;
bta->risc_cpu = pci_alloc_consistent
(bta->pci, bta->risc_size, &bta->risc_dma);
if (NULL == bta->risc_cpu) {
pci_free_consistent(bta->pci, bta->buf_size, bta->buf_cpu, bta->buf_dma);
bta->buf_cpu = NULL;
return -ENOMEM;
}
}
return 0;
}
static void free_buffer(struct btaudio *bta)
{
if (NULL != bta->buf_cpu) {
pci_free_consistent(bta->pci, bta->buf_size,
bta->buf_cpu, bta->buf_dma);
bta->buf_cpu = NULL;
}
if (NULL != bta->risc_cpu) {
pci_free_consistent(bta->pci, bta->risc_size,
bta->risc_cpu, bta->risc_dma);
bta->risc_cpu = NULL;
}
}
static int make_risc(struct btaudio *bta)
{
int rp, bp, line, block;
unsigned long risc;
bta->block_bytes = bta->buf_size >> 4;
bta->block_count = 1 << 4;
bta->line_bytes = bta->block_bytes;
bta->line_count = bta->block_count;
while (bta->line_bytes > 4095) {
bta->line_bytes >>= 1;
bta->line_count <<= 1;
}
if (bta->line_count > 255)
return -EINVAL;
if (debug)
printk(KERN_DEBUG
"btaudio: bufsize=%d - bs=%d bc=%d - ls=%d, lc=%d\n",
bta->buf_size,bta->block_bytes,bta->block_count,
bta->line_bytes,bta->line_count);
rp = 0; bp = 0;
block = 0;
bta->risc_cpu[rp++] = cpu_to_le32(RISC_SYNC|RISC_SYNC_FM1);
bta->risc_cpu[rp++] = cpu_to_le32(0);
for (line = 0; line < bta->line_count; line++) {
risc = RISC_WRITE | RISC_WR_SOL | RISC_WR_EOL;
risc |= bta->line_bytes;
if (0 == (bp & (bta->block_bytes-1))) {
risc |= RISC_IRQ;
risc |= (block & 0x0f) << 16;
risc |= (~block & 0x0f) << 20;
block++;
}
bta->risc_cpu[rp++] = cpu_to_le32(risc);
bta->risc_cpu[rp++] = cpu_to_le32(bta->buf_dma + bp);
bp += bta->line_bytes;
}
bta->risc_cpu[rp++] = cpu_to_le32(RISC_SYNC|RISC_SYNC_VRO);
bta->risc_cpu[rp++] = cpu_to_le32(0);
bta->risc_cpu[rp++] = cpu_to_le32(RISC_JUMP);
bta->risc_cpu[rp++] = cpu_to_le32(bta->risc_dma);
return 0;
}
static int start_recording(struct btaudio *bta)
{
int ret;
if (0 != (ret = alloc_buffer(bta)))
return ret;
if (0 != (ret = make_risc(bta)))
return ret;
btwrite(bta->risc_dma, REG_RISC_STRT_ADD);
btwrite((bta->line_count << 16) | bta->line_bytes,
REG_PACKET_LEN);
btwrite(IRQ_BTAUDIO, REG_INT_MASK);
if (bta->analog) {
btwrite(DMA_CTL_ACAP_EN |
DMA_CTL_RISC_EN |
DMA_CTL_FIFO_EN |
DMA_CTL_DA_ES2 |
((bta->bits == 8) ? DMA_CTL_DA_SBR : 0) |
(bta->gain[bta->source] << 28) |
(bta->source << 24) |
(bta->decimation << 8),
REG_GPIO_DMA_CTL);
} else {
btwrite(DMA_CTL_ACAP_EN |
DMA_CTL_RISC_EN |
DMA_CTL_FIFO_EN |
DMA_CTL_DA_ES2 |
DMA_CTL_A_PWRDN |
(1 << 6) |
((bta->bits == 8) ? DMA_CTL_DA_SBR : 0) |
(bta->gain[bta->source] << 28) |
(bta->source << 24) |
(bta->decimation << 8),
REG_GPIO_DMA_CTL);
}
bta->dma_block = 0;
bta->read_offset = 0;
bta->read_count = 0;
bta->recording = 1;
if (debug)
printk(KERN_DEBUG "btaudio: recording started\n");
return 0;
}
static void stop_recording(struct btaudio *bta)
{
btand(~15, REG_GPIO_DMA_CTL);
bta->recording = 0;
if (debug)
printk(KERN_DEBUG "btaudio: recording stopped\n");
}
/* -------------------------------------------------------------- */
static int btaudio_mixer_open(struct inode *inode, struct file *file)
{
int minor = iminor(inode);
struct btaudio *bta;
for (bta = btaudios; bta != NULL; bta = bta->next)
if (bta->mixer_dev == minor)
break;
if (NULL == bta)
return -ENODEV;
if (debug)
printk("btaudio: open mixer [%d]\n",minor);
file->private_data = bta;
return 0;
}
static int btaudio_mixer_release(struct inode *inode, struct file *file)
{
return 0;
}
static int btaudio_mixer_ioctl(struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg)
{
struct btaudio *bta = file->private_data;
int ret,val=0,i=0;
void __user *argp = (void __user *)arg;
if (cmd == SOUND_MIXER_INFO) {
mixer_info info;
memset(&info,0,sizeof(info));
strlcpy(info.id,"bt878",sizeof(info.id));
strlcpy(info.name,"Brooktree Bt878 audio",sizeof(info.name));
info.modify_counter = bta->mixcount;
if (copy_to_user(argp, &info, sizeof(info)))
return -EFAULT;
return 0;
}
if (cmd == SOUND_OLD_MIXER_INFO) {
_old_mixer_info info;
memset(&info,0,sizeof(info));
strlcpy(info.id, "bt878", sizeof(info.id));
strlcpy(info.name,"Brooktree Bt878 audio",sizeof(info.name));
if (copy_to_user(argp, &info, sizeof(info)))
return -EFAULT;
return 0;
}
if (cmd == OSS_GETVERSION)
return put_user(SOUND_VERSION, (int __user *)argp);
/* read */
if (_SIOC_DIR(cmd) & _SIOC_WRITE)
if (get_user(val, (int __user *)argp))
return -EFAULT;
switch (cmd) {
case MIXER_READ(SOUND_MIXER_CAPS):
ret = SOUND_CAP_EXCL_INPUT;
break;
case MIXER_READ(SOUND_MIXER_STEREODEVS):
ret = 0;
break;
case MIXER_READ(SOUND_MIXER_RECMASK):
case MIXER_READ(SOUND_MIXER_DEVMASK):
ret = SOUND_MASK_LINE1|SOUND_MASK_LINE2|SOUND_MASK_LINE3;
break;
case MIXER_WRITE(SOUND_MIXER_RECSRC):
if (val & SOUND_MASK_LINE1 && bta->source != 0)
bta->source = 0;
else if (val & SOUND_MASK_LINE2 && bta->source != 1)
bta->source = 1;
else if (val & SOUND_MASK_LINE3 && bta->source != 2)
bta->source = 2;
btaor((bta->gain[bta->source] << 28) |
(bta->source << 24),
0x0cffffff, REG_GPIO_DMA_CTL);
case MIXER_READ(SOUND_MIXER_RECSRC):
switch (bta->source) {
case 0: ret = SOUND_MASK_LINE1; break;
case 1: ret = SOUND_MASK_LINE2; break;
case 2: ret = SOUND_MASK_LINE3; break;
default: ret = 0;
}
break;
case MIXER_WRITE(SOUND_MIXER_LINE1):
case MIXER_WRITE(SOUND_MIXER_LINE2):
case MIXER_WRITE(SOUND_MIXER_LINE3):
if (MIXER_WRITE(SOUND_MIXER_LINE1) == cmd)
i = 0;
if (MIXER_WRITE(SOUND_MIXER_LINE2) == cmd)
i = 1;
if (MIXER_WRITE(SOUND_MIXER_LINE3) == cmd)
i = 2;
bta->gain[i] = (val & 0xff) * 15 / 100;
if (bta->gain[i] > 15) bta->gain[i] = 15;
if (bta->gain[i] < 0) bta->gain[i] = 0;
if (i == bta->source)
btaor((bta->gain[bta->source]<<28),
0x0fffffff, REG_GPIO_DMA_CTL);
ret = bta->gain[i] * 100 / 15;
ret |= ret << 8;
break;
case MIXER_READ(SOUND_MIXER_LINE1):
case MIXER_READ(SOUND_MIXER_LINE2):
case MIXER_READ(SOUND_MIXER_LINE3):
if (MIXER_READ(SOUND_MIXER_LINE1) == cmd)
i = 0;
if (MIXER_READ(SOUND_MIXER_LINE2) == cmd)
i = 1;
if (MIXER_READ(SOUND_MIXER_LINE3) == cmd)
i = 2;
ret = bta->gain[i] * 100 / 15;
ret |= ret << 8;
break;
default:
return -EINVAL;
}
if (put_user(ret, (int __user *)argp))
return -EFAULT;
return 0;
}
static const struct file_operations btaudio_mixer_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.open = btaudio_mixer_open,
.release = btaudio_mixer_release,
.ioctl = btaudio_mixer_ioctl,
};
/* -------------------------------------------------------------- */
static int btaudio_dsp_open(struct inode *inode, struct file *file,
struct btaudio *bta, int analog)
{
mutex_lock(&bta->lock);
if (bta->users)
goto busy;
bta->users++;
file->private_data = bta;
bta->analog = analog;
bta->dma_block = 0;
bta->read_offset = 0;
bta->read_count = 0;
bta->sampleshift = 0;
mutex_unlock(&bta->lock);
return 0;
busy:
mutex_unlock(&bta->lock);
return -EBUSY;
}
static int btaudio_dsp_open_digital(struct inode *inode, struct file *file)
{
int minor = iminor(inode);
struct btaudio *bta;
for (bta = btaudios; bta != NULL; bta = bta->next)
if (bta->dsp_digital == minor)
break;
if (NULL == bta)
return -ENODEV;
if (debug)
printk("btaudio: open digital dsp [%d]\n",minor);
return btaudio_dsp_open(inode,file,bta,0);
}
static int btaudio_dsp_open_analog(struct inode *inode, struct file *file)
{
int minor = iminor(inode);
struct btaudio *bta;
for (bta = btaudios; bta != NULL; bta = bta->next)
if (bta->dsp_analog == minor)
break;
if (NULL == bta)
return -ENODEV;
if (debug)
printk("btaudio: open analog dsp [%d]\n",minor);
return btaudio_dsp_open(inode,file,bta,1);
}
static int btaudio_dsp_release(struct inode *inode, struct file *file)
{
struct btaudio *bta = file->private_data;
mutex_lock(&bta->lock);
if (bta->recording)
stop_recording(bta);
bta->users--;
mutex_unlock(&bta->lock);
return 0;
}
static ssize_t btaudio_dsp_read(struct file *file, char __user *buffer,
size_t swcount, loff_t *ppos)
{
struct btaudio *bta = file->private_data;
int hwcount = swcount << bta->sampleshift;
int nsrc, ndst, err, ret = 0;
DECLARE_WAITQUEUE(wait, current);
add_wait_queue(&bta->readq, &wait);
mutex_lock(&bta->lock);
while (swcount > 0) {
if (0 == bta->read_count) {
if (!bta->recording) {
if (0 != (err = start_recording(bta))) {
if (0 == ret)
ret = err;
break;
}
}
if (file->f_flags & O_NONBLOCK) {
if (0 == ret)
ret = -EAGAIN;
break;
}
mutex_unlock(&bta->lock);
current->state = TASK_INTERRUPTIBLE;
schedule();
mutex_lock(&bta->lock);
if(signal_pending(current)) {
if (0 == ret)
ret = -EINTR;
break;
}
}
nsrc = (bta->read_count < hwcount) ? bta->read_count : hwcount;
if (nsrc > bta->buf_size - bta->read_offset)
nsrc = bta->buf_size - bta->read_offset;
ndst = nsrc >> bta->sampleshift;
if ((bta->analog && 0 == bta->sampleshift) ||
(!bta->analog && 2 == bta->channels)) {
/* just copy */
if (copy_to_user(buffer + ret, bta->buf_cpu + bta->read_offset, nsrc)) {
if (0 == ret)
ret = -EFAULT;
break;
}
} else if (!bta->analog) {
/* stereo => mono (digital audio) */
__s16 *src = (__s16*)(bta->buf_cpu + bta->read_offset);
__s16 __user *dst = (__s16 __user *)(buffer + ret);
__s16 avg;
int n = ndst>>1;
if (!access_ok(VERIFY_WRITE, dst, ndst)) {
if (0 == ret)
ret = -EFAULT;
break;
}
for (; n; n--, dst++) {
avg = (__s16)le16_to_cpu(*src) / 2; src++;
avg += (__s16)le16_to_cpu(*src) / 2; src++;
__put_user(cpu_to_le16(avg),dst);
}
} else if (8 == bta->bits) {
/* copy + byte downsampling (audio A/D) */
__u8 *src = bta->buf_cpu + bta->read_offset;
__u8 __user *dst = buffer + ret;
int n = ndst;
if (!access_ok(VERIFY_WRITE, dst, ndst)) {
if (0 == ret)
ret = -EFAULT;
break;
}
for (; n; n--, src += (1 << bta->sampleshift), dst++)
__put_user(*src, dst);
} else {
/* copy + word downsampling (audio A/D) */
__u16 *src = (__u16*)(bta->buf_cpu + bta->read_offset);
__u16 __user *dst = (__u16 __user *)(buffer + ret);
int n = ndst>>1;
if (!access_ok(VERIFY_WRITE,dst,ndst)) {
if (0 == ret)
ret = -EFAULT;
break;
}
for (; n; n--, src += (1 << bta->sampleshift), dst++)
__put_user(*src, dst);
}
ret += ndst;
swcount -= ndst;
hwcount -= nsrc;
bta->read_count -= nsrc;
bta->read_offset += nsrc;
if (bta->read_offset == bta->buf_size)
bta->read_offset = 0;
}
mutex_unlock(&bta->lock);
remove_wait_queue(&bta->readq, &wait);
current->state = TASK_RUNNING;
return ret;
}
static ssize_t btaudio_dsp_write(struct file *file, const char __user *buffer,
size_t count, loff_t *ppos)
{
return -EINVAL;
}
static int btaudio_dsp_ioctl(struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg)
{
struct btaudio *bta = file->private_data;
int s, i, ret, val = 0;
void __user *argp = (void __user *)arg;
int __user *p = argp;
switch (cmd) {
case OSS_GETVERSION:
return put_user(SOUND_VERSION, p);
case SNDCTL_DSP_GETCAPS:
return 0;
case SNDCTL_DSP_SPEED:
if (get_user(val, p))
return -EFAULT;
if (bta->analog) {
for (s = 0; s < 16; s++)
if (val << s >= HWBASE_AD*4/15)
break;
for (i = 15; i >= 5; i--)
if (val << s <= HWBASE_AD*4/i)
break;
bta->sampleshift = s;
bta->decimation = i;
if (debug)
printk(KERN_DEBUG "btaudio: rate: req=%d "
"dec=%d shift=%d hwrate=%d swrate=%d\n",
val,i,s,(HWBASE_AD*4/i),(HWBASE_AD*4/i)>>s);
} else {
bta->sampleshift = (bta->channels == 2) ? 0 : 1;
bta->decimation = 0;
}
if (bta->recording) {
mutex_lock(&bta->lock);
stop_recording(bta);
start_recording(bta);
mutex_unlock(&bta->lock);
}
/* fall through */
case SOUND_PCM_READ_RATE:
if (bta->analog) {
return put_user(HWBASE_AD*4/bta->decimation>>bta->sampleshift, p);
} else {
return put_user(bta->rate, p);
}
case SNDCTL_DSP_STEREO:
if (!bta->analog) {
if (get_user(val, p))
return -EFAULT;
bta->channels = (val > 0) ? 2 : 1;
bta->sampleshift = (bta->channels == 2) ? 0 : 1;
if (debug)
printk(KERN_INFO
"btaudio: stereo=%d channels=%d\n",
val,bta->channels);
} else {
if (val == 1)
return -EFAULT;
else {
bta->channels = 1;
if (debug)
printk(KERN_INFO
"btaudio: stereo=0 channels=1\n");
}
}
return put_user((bta->channels)-1, p);
case SNDCTL_DSP_CHANNELS:
if (!bta->analog) {
if (get_user(val, p))
return -EFAULT;
bta->channels = (val > 1) ? 2 : 1;
bta->sampleshift = (bta->channels == 2) ? 0 : 1;
if (debug)
printk(KERN_DEBUG
"btaudio: val=%d channels=%d\n",
val,bta->channels);
}
/* fall through */
case SOUND_PCM_READ_CHANNELS:
return put_user(bta->channels, p);
case SNDCTL_DSP_GETFMTS: /* Returns a mask */
if (bta->analog)
return put_user(AFMT_S16_LE|AFMT_S8, p);
else
return put_user(AFMT_S16_LE, p);
case SNDCTL_DSP_SETFMT: /* Selects ONE fmt*/
if (get_user(val, p))
return -EFAULT;
if (val != AFMT_QUERY) {
if (bta->analog)
bta->bits = (val == AFMT_S8) ? 8 : 16;
else
bta->bits = 16;
if (bta->recording) {
mutex_lock(&bta->lock);
stop_recording(bta);
start_recording(bta);
mutex_unlock(&bta->lock);
}
}
if (debug)
printk(KERN_DEBUG "btaudio: fmt: bits=%d\n",bta->bits);
return put_user((bta->bits==16) ? AFMT_S16_LE : AFMT_S8,
p);
break;
case SOUND_PCM_READ_BITS:
return put_user(bta->bits, p);
case SNDCTL_DSP_NONBLOCK:
file->f_flags |= O_NONBLOCK;
return 0;
case SNDCTL_DSP_RESET:
if (bta->recording) {
mutex_lock(&bta->lock);
stop_recording(bta);
mutex_unlock(&bta->lock);
}
return 0;
case SNDCTL_DSP_GETBLKSIZE:
if (!bta->recording) {
if (0 != (ret = alloc_buffer(bta)))
return ret;
if (0 != (ret = make_risc(bta)))
return ret;
}
return put_user(bta->block_bytes>>bta->sampleshift,p);
case SNDCTL_DSP_SYNC:
/* NOP */
return 0;
case SNDCTL_DSP_GETISPACE:
{
audio_buf_info info;
if (!bta->recording)
return -EINVAL;
info.fragsize = bta->block_bytes>>bta->sampleshift;
info.fragstotal = bta->block_count;
info.bytes = bta->read_count;
info.fragments = info.bytes / info.fragsize;
if (debug)
printk(KERN_DEBUG "btaudio: SNDCTL_DSP_GETISPACE "
"returns %d/%d/%d/%d\n",
info.fragsize, info.fragstotal,
info.bytes, info.fragments);
if (copy_to_user(argp, &info, sizeof(info)))
return -EFAULT;
return 0;
}
#if 0 /* TODO */
case SNDCTL_DSP_GETTRIGGER:
case SNDCTL_DSP_SETTRIGGER:
case SNDCTL_DSP_SETFRAGMENT:
#endif
default:
return -EINVAL;
}
}
static unsigned int btaudio_dsp_poll(struct file *file, struct poll_table_struct *wait)
{
struct btaudio *bta = file->private_data;
unsigned int mask = 0;
poll_wait(file, &bta->readq, wait);
if (0 != bta->read_count)
mask |= (POLLIN | POLLRDNORM);
return mask;
}
static const struct file_operations btaudio_digital_dsp_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.open = btaudio_dsp_open_digital,
.release = btaudio_dsp_release,
.read = btaudio_dsp_read,
.write = btaudio_dsp_write,
.ioctl = btaudio_dsp_ioctl,
.poll = btaudio_dsp_poll,
};
static const struct file_operations btaudio_analog_dsp_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.open = btaudio_dsp_open_analog,
.release = btaudio_dsp_release,
.read = btaudio_dsp_read,
.write = btaudio_dsp_write,
.ioctl = btaudio_dsp_ioctl,
.poll = btaudio_dsp_poll,
};
/* -------------------------------------------------------------- */
static char *irq_name[] = { "", "", "", "OFLOW", "", "", "", "", "", "", "",
"RISCI", "FBUS", "FTRGT", "FDSR", "PPERR",
"RIPERR", "PABORT", "OCERR", "SCERR" };
static irqreturn_t btaudio_irq(int irq, void *dev_id)
{
int count = 0;
u32 stat,astat;
struct btaudio *bta = dev_id;
int handled = 0;
for (;;) {
count++;
stat = btread(REG_INT_STAT);
astat = stat & btread(REG_INT_MASK);
if (!astat)
return IRQ_RETVAL(handled);
handled = 1;
btwrite(astat,REG_INT_STAT);
if (irq_debug) {
int i;
printk(KERN_DEBUG "btaudio: irq loop=%d risc=%x, bits:",
count, stat>>28);
for (i = 0; i < (sizeof(irq_name)/sizeof(char*)); i++) {
if (stat & (1 << i))
printk(" %s",irq_name[i]);
if (astat & (1 << i))
printk("*");
}
printk("\n");
}
if (stat & IRQ_RISCI) {
int blocks;
blocks = (stat >> 28) - bta->dma_block;
if (blocks < 0)
blocks += bta->block_count;
bta->dma_block = stat >> 28;
if (bta->read_count + 2*bta->block_bytes > bta->buf_size) {
stop_recording(bta);
printk(KERN_INFO "btaudio: buffer overrun\n");
}
if (blocks > 0) {
bta->read_count += blocks * bta->block_bytes;
wake_up_interruptible(&bta->readq);
}
}
if (count > 10) {
printk(KERN_WARNING
"btaudio: Oops - irq mask cleared\n");
btwrite(0, REG_INT_MASK);
}
}
return IRQ_NONE;
}
/* -------------------------------------------------------------- */
static unsigned int dsp1 = -1;
static unsigned int dsp2 = -1;
static unsigned int mixer = -1;
static int latency = -1;
static int digital = 1;
static int analog = 1;
static int rate;
#define BTA_OSPREY200 1
static struct cardinfo cards[] = {
[0] = {
.name = "default",
.rate = 32000,
},
[BTA_OSPREY200] = {
.name = "Osprey 200",
.rate = 44100,
},
};
static int __devinit btaudio_probe(struct pci_dev *pci_dev,
const struct pci_device_id *pci_id)
{
struct btaudio *bta;
struct cardinfo *card = &cards[pci_id->driver_data];
unsigned char revision,lat;
int rc = -EBUSY;
if (pci_enable_device(pci_dev))
return -EIO;
if (!request_mem_region(pci_resource_start(pci_dev,0),
pci_resource_len(pci_dev,0),
"btaudio")) {
return -EBUSY;
}
bta = kzalloc(sizeof(*bta),GFP_ATOMIC);
if (!bta) {
rc = -ENOMEM;
goto fail0;
}
bta->pci = pci_dev;
bta->irq = pci_dev->irq;
bta->mem = pci_resource_start(pci_dev,0);
bta->mmio = ioremap(pci_resource_start(pci_dev,0),
pci_resource_len(pci_dev,0));
bta->source = 1;
bta->bits = 8;
bta->channels = 1;
if (bta->analog) {
bta->decimation = 15;
} else {
bta->decimation = 0;
bta->sampleshift = 1;
}
/* sample rate */
bta->rate = card->rate;
if (rate)
bta->rate = rate;
mutex_init(&bta->lock);
init_waitqueue_head(&bta->readq);
if (-1 != latency) {
printk(KERN_INFO "btaudio: setting pci latency timer to %d\n",
latency);
pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
}
pci_read_config_byte(pci_dev, PCI_CLASS_REVISION, &revision);
pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &lat);
printk(KERN_INFO "btaudio: Bt%x (rev %d) at %02x:%02x.%x, ",
pci_dev->device,revision,pci_dev->bus->number,
PCI_SLOT(pci_dev->devfn),PCI_FUNC(pci_dev->devfn));
printk("irq: %d, latency: %d, mmio: 0x%lx\n",
bta->irq, lat, bta->mem);
printk("btaudio: using card config \"%s\"\n", card->name);
/* init hw */
btwrite(0, REG_GPIO_DMA_CTL);
btwrite(0, REG_INT_MASK);
btwrite(~0U, REG_INT_STAT);
pci_set_master(pci_dev);
if ((rc = request_irq(bta->irq, btaudio_irq, IRQF_SHARED|IRQF_DISABLED,
"btaudio",(void *)bta)) < 0) {
printk(KERN_WARNING
"btaudio: can't request irq (rc=%d)\n",rc);
goto fail1;
}
/* register devices */
if (digital) {
rc = bta->dsp_digital =
register_sound_dsp(&btaudio_digital_dsp_fops,dsp1);
if (rc < 0) {
printk(KERN_WARNING
"btaudio: can't register digital dsp (rc=%d)\n",rc);
goto fail2;
}
printk(KERN_INFO "btaudio: registered device dsp%d [digital]\n",
bta->dsp_digital >> 4);
}
if (analog) {
rc = bta->dsp_analog =
register_sound_dsp(&btaudio_analog_dsp_fops,dsp2);
if (rc < 0) {
printk(KERN_WARNING
"btaudio: can't register analog dsp (rc=%d)\n",rc);
goto fail3;
}
printk(KERN_INFO "btaudio: registered device dsp%d [analog]\n",
bta->dsp_analog >> 4);
rc = bta->mixer_dev = register_sound_mixer(&btaudio_mixer_fops,mixer);
if (rc < 0) {
printk(KERN_WARNING
"btaudio: can't register mixer (rc=%d)\n",rc);
goto fail4;
}
printk(KERN_INFO "btaudio: registered device mixer%d\n",
bta->mixer_dev >> 4);
}
/* hook into linked list */
bta->next = btaudios;
btaudios = bta;
pci_set_drvdata(pci_dev,bta);
return 0;
fail4:
unregister_sound_dsp(bta->dsp_analog);
fail3:
if (digital)
unregister_sound_dsp(bta->dsp_digital);
fail2:
free_irq(bta->irq,bta);
fail1:
iounmap(bta->mmio);
kfree(bta);
fail0:
release_mem_region(pci_resource_start(pci_dev,0),
pci_resource_len(pci_dev,0));
return rc;
}
static void __devexit btaudio_remove(struct pci_dev *pci_dev)
{
struct btaudio *bta = pci_get_drvdata(pci_dev);
struct btaudio *walk;
/* turn off all DMA / IRQs */
btand(~15, REG_GPIO_DMA_CTL);
btwrite(0, REG_INT_MASK);
btwrite(~0U, REG_INT_STAT);
/* unregister devices */
if (digital) {
unregister_sound_dsp(bta->dsp_digital);
}
if (analog) {
unregister_sound_dsp(bta->dsp_analog);
unregister_sound_mixer(bta->mixer_dev);
}
/* free resources */
free_buffer(bta);
free_irq(bta->irq,bta);
release_mem_region(pci_resource_start(pci_dev,0),
pci_resource_len(pci_dev,0));
iounmap(bta->mmio);
/* remove from linked list */
if (bta == btaudios) {
btaudios = NULL;
} else {
for (walk = btaudios; walk->next != bta; walk = walk->next)
; /* if (NULL == walk->next) BUG(); */
walk->next = bta->next;
}
pci_set_drvdata(pci_dev, NULL);
kfree(bta);
return;
}
/* -------------------------------------------------------------- */
static struct pci_device_id btaudio_pci_tbl[] = {
{
.vendor = PCI_VENDOR_ID_BROOKTREE,
.device = 0x0878,
.subvendor = 0x0070,
.subdevice = 0xff01,
.driver_data = BTA_OSPREY200,
},{
.vendor = PCI_VENDOR_ID_BROOKTREE,
.device = 0x0878,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
},{
.vendor = PCI_VENDOR_ID_BROOKTREE,
.device = 0x0878,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
},{
/* --- end of list --- */
}
};
static struct pci_driver btaudio_pci_driver = {
.name = "btaudio",
.id_table = btaudio_pci_tbl,
.probe = btaudio_probe,
.remove = __devexit_p(btaudio_remove),
};
static int btaudio_init_module(void)
{
printk(KERN_INFO "btaudio: driver version 0.7 loaded [%s%s%s]\n",
digital ? "digital" : "",
analog && digital ? "+" : "",
analog ? "analog" : "");
return pci_register_driver(&btaudio_pci_driver);
}
static void btaudio_cleanup_module(void)
{
pci_unregister_driver(&btaudio_pci_driver);
return;
}
module_init(btaudio_init_module);
module_exit(btaudio_cleanup_module);
module_param(dsp1, int, S_IRUGO);
module_param(dsp2, int, S_IRUGO);
module_param(mixer, int, S_IRUGO);
module_param(debug, int, S_IRUGO | S_IWUSR);
module_param(irq_debug, int, S_IRUGO | S_IWUSR);
module_param(digital, int, S_IRUGO);
module_param(analog, int, S_IRUGO);
module_param(rate, int, S_IRUGO);
module_param(latency, int, S_IRUGO);
MODULE_PARM_DESC(latency,"pci latency timer");
MODULE_DEVICE_TABLE(pci, btaudio_pci_tbl);
MODULE_DESCRIPTION("bt878 audio dma driver");
MODULE_AUTHOR("Gerd Knorr");
MODULE_LICENSE("GPL");
/*
* Local variables:
* c-basic-offset: 8
* End:
*/
/*
* Copyright (C) by Hannu Savolainen 1993-1997
*
* cs4232.c
*
* The low level driver for Crystal CS4232 based cards. The CS4232 is
* a PnP compatible chip which contains a CS4231A codec, SB emulation,
* a MPU401 compatible MIDI port, joystick and synthesizer and IDE CD-ROM
* interfaces. This is just a temporary driver until full PnP support
* gets implemented. Just the WSS codec, FM synth and the MIDI ports are
* supported. Other interfaces are left uninitialized.
*
* ifdef ...WAVEFRONT...
*
* Support is provided for initializing the WaveFront synth
* interface as well, which is logical device #4. Note that if
* you have a Tropez+ card, you probably don't need to setup
* the CS4232-supported MIDI interface, since it corresponds to
* the internal 26-pin header that's hard to access. Using this
* requires an additional IRQ, a resource none too plentiful in
* this environment. Just don't set module parameters mpuio and
* mpuirq, and the MIDI port will be left uninitialized. You can
* still use the ICS2115 hosted MIDI interface which corresponds
* to the 9-pin D connector on the back of the card.
*
* endif ...WAVEFRONT...
*
* Supported chips are:
* CS4232
* CS4236
* CS4236B
*
* Note: You will need a PnP config setup to initialise some CS4232 boards
* anyway.
*
* Changes
* John Rood Added Bose Sound System Support.
* Toshio Spoor
* Alan Cox Modularisation, Basic cleanups.
* Paul Barton-Davis Separated MPU configuration, added
* Tropez+ (WaveFront) support
* Christoph Hellwig Adapted to module_init/module_exit,
* simple cleanups
* Arnaldo C. de Melo got rid of attach_uart401
* Bartlomiej Zolnierkiewicz
* Added some __init/__initdata/__exit
* Marcus Meissner Added ISA PnP support.
*/
#include <linux/pnp.h>
#include <linux/module.h>
#include <linux/init.h>
#include "sound_config.h"
#include "ad1848.h"
#include "mpu401.h"
#define KEY_PORT 0x279 /* Same as LPT1 status port */
#define CSN_NUM 0x99 /* Just a random number */
#define INDEX_ADDRESS 0x00 /* (R0) Index Address Register */
#define INDEX_DATA 0x01 /* (R1) Indexed Data Register */
#define PIN_CONTROL 0x0a /* (I10) Pin Control */
#define ENABLE_PINS 0xc0 /* XCTRL0/XCTRL1 enable */
static void CS_OUT(unsigned char a)
{
outb(a, KEY_PORT);
}
#define CS_OUT2(a, b) {CS_OUT(a);CS_OUT(b);}
#define CS_OUT3(a, b, c) {CS_OUT(a);CS_OUT(b);CS_OUT(c);}
static int __initdata bss = 0;
static int mpu_base, mpu_irq;
static int synth_base, synth_irq;
static int mpu_detected;
static int probe_cs4232_mpu(struct address_info *hw_config)
{
/*
* Just write down the config values.
*/
mpu_base = hw_config->io_base;
mpu_irq = hw_config->irq;
return 1;
}
static unsigned char crystal_key[] = /* A 32 byte magic key sequence */
{
0x96, 0x35, 0x9a, 0xcd, 0xe6, 0xf3, 0x79, 0xbc,
0x5e, 0xaf, 0x57, 0x2b, 0x15, 0x8a, 0xc5, 0xe2,
0xf1, 0xf8, 0x7c, 0x3e, 0x9f, 0x4f, 0x27, 0x13,
0x09, 0x84, 0x42, 0xa1, 0xd0, 0x68, 0x34, 0x1a
};
static void sleep(unsigned howlong)
{
current->state = TASK_INTERRUPTIBLE;
schedule_timeout(howlong);
}
static void enable_xctrl(int baseio)
{
unsigned char regd;
/*
* Some IBM Aptiva's have the Bose Sound System. By default
* the Bose Amplifier is disabled. The amplifier will be
* activated, by setting the XCTRL0 and XCTRL1 bits.
* Volume of the monitor bose speakers/woofer, can then
* be set by changing the PCM volume.
*
*/
printk("cs4232: enabling Bose Sound System Amplifier.\n");
/* Switch to Pin Control Address */
regd = inb(baseio + INDEX_ADDRESS) & 0xe0;
outb(((unsigned char) (PIN_CONTROL | regd)), baseio + INDEX_ADDRESS );
/* Activate the XCTRL0 and XCTRL1 Pins */
regd = inb(baseio + INDEX_DATA);
outb(((unsigned char) (ENABLE_PINS | regd)), baseio + INDEX_DATA );
}
static int __init probe_cs4232(struct address_info *hw_config, int isapnp_configured)
{
int i, n;
int base = hw_config->io_base, irq = hw_config->irq;
int dma1 = hw_config->dma, dma2 = hw_config->dma2;
struct resource *ports;
if (base == -1 || irq == -1 || dma1 == -1) {
printk(KERN_ERR "cs4232: dma, irq and io must be set.\n");
return 0;
}
/*
* Verify that the I/O port range is free.
*/
ports = request_region(base, 4, "ad1848");
if (!ports) {
printk(KERN_ERR "cs4232.c: I/O port 0x%03x not free\n", base);
return 0;
}
if (ad1848_detect(ports, NULL, hw_config->osp)) {
goto got_it; /* The card is already active */
}
if (isapnp_configured) {
printk(KERN_ERR "cs4232.c: ISA PnP configured, but not detected?\n");
goto fail;
}
/*
* This version of the driver doesn't use the PnP method when configuring
* the card but a simplified method defined by Crystal. This means that
* just one CS4232 compatible device can exist on the system. Also this
* method conflicts with possible PnP support in the OS. For this reason
* driver is just a temporary kludge.
*
* Also the Cirrus/Crystal method doesn't always work. Try ISA PnP first ;)
*/
/*
* Repeat initialization few times since it doesn't always succeed in
* first time.
*/
for (n = 0; n < 4; n++)
{
/*
* Wake up the card by sending a 32 byte Crystal key to the key port.
*/
for (i = 0; i < 32; i++)
CS_OUT(crystal_key[i]);
sleep(HZ / 10);
/*
* Now set the CSN (Card Select Number).
*/
CS_OUT2(0x06, CSN_NUM);
/*
* Then set some config bytes. First logical device 0
*/
CS_OUT2(0x15, 0x00); /* Select logical device 0 (WSS/SB/FM) */
CS_OUT3(0x47, (base >> 8) & 0xff, base & 0xff); /* WSS base */
if (!request_region(0x388, 4, "FM")) /* Not free */
CS_OUT3(0x48, 0x00, 0x00) /* FM base off */
else {
release_region(0x388, 4);
CS_OUT3(0x48, 0x03, 0x88); /* FM base 0x388 */
}
CS_OUT3(0x42, 0x00, 0x00); /* SB base off */
CS_OUT2(0x22, irq); /* SB+WSS IRQ */
CS_OUT2(0x2a, dma1); /* SB+WSS DMA */
if (dma2 != -1)
CS_OUT2(0x25, dma2) /* WSS DMA2 */
else
CS_OUT2(0x25, 4); /* No WSS DMA2 */
CS_OUT2(0x33, 0x01); /* Activate logical dev 0 */
sleep(HZ / 10);
/*
* Initialize logical device 3 (MPU)
*/
if (mpu_base != 0 && mpu_irq != 0)
{
CS_OUT2(0x15, 0x03); /* Select logical device 3 (MPU) */
CS_OUT3(0x47, (mpu_base >> 8) & 0xff, mpu_base & 0xff); /* MPU base */
CS_OUT2(0x22, mpu_irq); /* MPU IRQ */
CS_OUT2(0x33, 0x01); /* Activate logical dev 3 */
}
if(synth_base != 0)
{
CS_OUT2 (0x15, 0x04); /* logical device 4 (WaveFront) */
CS_OUT3 (0x47, (synth_base >> 8) & 0xff,
synth_base & 0xff); /* base */
CS_OUT2 (0x22, synth_irq); /* IRQ */
CS_OUT2 (0x33, 0x01); /* Activate logical dev 4 */
}
/*
* Finally activate the chip
*/
CS_OUT(0x79);
sleep(HZ / 5);
/*
* Then try to detect the codec part of the chip
*/
if (ad1848_detect(ports, NULL, hw_config->osp))
goto got_it;
sleep(HZ);
}
fail:
release_region(base, 4);
return 0;
got_it:
if (dma2 == -1)
dma2 = dma1;
hw_config->slots[0] = ad1848_init("Crystal audio controller", ports,
irq,
dma1, /* Playback DMA */
dma2, /* Capture DMA */
0,
hw_config->osp,
THIS_MODULE);
if (hw_config->slots[0] != -1 &&
audio_devs[hw_config->slots[0]]->mixer_dev!=-1)
{
/* Assume the mixer map is as suggested in the CS4232 databook */
AD1848_REROUTE(SOUND_MIXER_LINE1, SOUND_MIXER_LINE);
AD1848_REROUTE(SOUND_MIXER_LINE2, SOUND_MIXER_CD);
AD1848_REROUTE(SOUND_MIXER_LINE3, SOUND_MIXER_SYNTH); /* FM synth */
}
if (mpu_base != 0 && mpu_irq != 0)
{
static struct address_info hw_config2 = {
0
}; /* Ensure it's initialized */
hw_config2.io_base = mpu_base;
hw_config2.irq = mpu_irq;
hw_config2.dma = -1;
hw_config2.dma2 = -1;
hw_config2.always_detect = 0;
hw_config2.name = NULL;
hw_config2.driver_use_1 = 0;
hw_config2.driver_use_2 = 0;
hw_config2.card_subtype = 0;
if (probe_uart401(&hw_config2, THIS_MODULE))
{
mpu_detected = 1;
}
else
{
mpu_base = mpu_irq = 0;
}
hw_config->slots[1] = hw_config2.slots[1];
}
if (bss)
enable_xctrl(base);
return 1;
}
static void __devexit unload_cs4232(struct address_info *hw_config)
{
int base = hw_config->io_base, irq = hw_config->irq;
int dma1 = hw_config->dma, dma2 = hw_config->dma2;
if (dma2 == -1)
dma2 = dma1;
ad1848_unload(base,
irq,
dma1, /* Playback DMA */
dma2, /* Capture DMA */
0);
sound_unload_audiodev(hw_config->slots[0]);
if (mpu_base != 0 && mpu_irq != 0 && mpu_detected)
{
static struct address_info hw_config2 =
{
0
}; /* Ensure it's initialized */
hw_config2.io_base = mpu_base;
hw_config2.irq = mpu_irq;
hw_config2.dma = -1;
hw_config2.dma2 = -1;
hw_config2.always_detect = 0;
hw_config2.name = NULL;
hw_config2.driver_use_1 = 0;
hw_config2.driver_use_2 = 0;
hw_config2.card_subtype = 0;
hw_config2.slots[1] = hw_config->slots[1];
unload_uart401(&hw_config2);
}
}
static struct address_info cfg;
static struct address_info cfg_mpu;
static int __initdata io = -1;
static int __initdata irq = -1;
static int __initdata dma = -1;
static int __initdata dma2 = -1;
static int __initdata mpuio = -1;
static int __initdata mpuirq = -1;
static int __initdata synthio = -1;
static int __initdata synthirq = -1;
static int __initdata isapnp = 1;
static unsigned int cs4232_devices;
MODULE_DESCRIPTION("CS4232 based soundcard driver");
MODULE_AUTHOR("Hannu Savolainen, Paul Barton-Davis");
MODULE_LICENSE("GPL");
module_param(io, int, 0);
MODULE_PARM_DESC(io,"base I/O port for AD1848");
module_param(irq, int, 0);
MODULE_PARM_DESC(irq,"IRQ for AD1848 chip");
module_param(dma, int, 0);
MODULE_PARM_DESC(dma,"8 bit DMA for AD1848 chip");
module_param(dma2, int, 0);
MODULE_PARM_DESC(dma2,"16 bit DMA for AD1848 chip");
module_param(mpuio, int, 0);
MODULE_PARM_DESC(mpuio,"MPU 401 base address");
module_param(mpuirq, int, 0);
MODULE_PARM_DESC(mpuirq,"MPU 401 IRQ");
module_param(synthio, int, 0);
MODULE_PARM_DESC(synthio,"Maui WaveTable base I/O port");
module_param(synthirq, int, 0);
MODULE_PARM_DESC(synthirq,"Maui WaveTable IRQ");
module_param(isapnp, bool, 0);
MODULE_PARM_DESC(isapnp,"Enable ISAPnP probing (default 1)");
module_param(bss, bool, 0);
MODULE_PARM_DESC(bss,"Enable Bose Sound System Support (default 0)");
/*
* Install a CS4232 based card. Need to have ad1848 and mpu401
* loaded ready.
*/
/* All cs4232 based cards have the main ad1848 card either as CSC0000 or
* CSC0100. */
static const struct pnp_device_id cs4232_pnp_table[] = {
{ .id = "CSC0100", .driver_data = 0 },
{ .id = "CSC0000", .driver_data = 0 },
/* Guillemot Turtlebeach something appears to be cs4232 compatible
* (untested) */
{ .id = "GIM0100", .driver_data = 0 },
{ .id = ""}
};
MODULE_DEVICE_TABLE(pnp, cs4232_pnp_table);
static int __init cs4232_pnp_probe(struct pnp_dev *dev, const struct pnp_device_id *dev_id)
{
struct address_info *isapnpcfg;
isapnpcfg = kmalloc(sizeof(*isapnpcfg),GFP_KERNEL);
if (!isapnpcfg)
return -ENOMEM;
isapnpcfg->irq = pnp_irq(dev, 0);
isapnpcfg->dma = pnp_dma(dev, 0);
isapnpcfg->dma2 = pnp_dma(dev, 1);
isapnpcfg->io_base = pnp_port_start(dev, 0);
if (probe_cs4232(isapnpcfg,TRUE) == 0) {
printk(KERN_ERR "cs4232: ISA PnP card found, but not detected?\n");
kfree(isapnpcfg);
return -ENODEV;
}
pnp_set_drvdata(dev,isapnpcfg);
cs4232_devices++;
return 0;
}
static void __devexit cs4232_pnp_remove(struct pnp_dev *dev)
{
struct address_info *cfg = pnp_get_drvdata(dev);
if (cfg) {
unload_cs4232(cfg);
kfree(cfg);
}
}
static struct pnp_driver cs4232_driver = {
.name = "cs4232",
.id_table = cs4232_pnp_table,
.probe = cs4232_pnp_probe,
.remove = __devexit_p(cs4232_pnp_remove),
};
static int __init init_cs4232(void)
{
#ifdef CONFIG_SOUND_WAVEFRONT_MODULE
if(synthio == -1)
printk(KERN_INFO "cs4232: set synthio and synthirq to use the wavefront facilities.\n");
else {
synth_base = synthio;
synth_irq = synthirq;
}
#else
if(synthio != -1)
printk(KERN_WARNING "cs4232: wavefront support not enabled in this driver.\n");
#endif
cfg.irq = -1;
if (isapnp) {
pnp_register_driver(&cs4232_driver);
if (cs4232_devices)
return 0;
}
if(io==-1||irq==-1||dma==-1)
{
printk(KERN_ERR "cs4232: Must set io, irq and dma.\n");
return -ENODEV;
}
cfg.io_base = io;
cfg.irq = irq;
cfg.dma = dma;
cfg.dma2 = dma2;
cfg_mpu.io_base = -1;
cfg_mpu.irq = -1;
if (mpuio != -1 && mpuirq != -1) {
cfg_mpu.io_base = mpuio;
cfg_mpu.irq = mpuirq;
probe_cs4232_mpu(&cfg_mpu); /* Bug always returns 0 not OK -- AC */
}
if (probe_cs4232(&cfg,FALSE) == 0)
return -ENODEV;
return 0;
}
static void __exit cleanup_cs4232(void)
{
pnp_unregister_driver(&cs4232_driver);
if (cfg.irq != -1)
unload_cs4232(&cfg); /* Unloads global MPU as well, if needed */
}
module_init(init_cs4232);
module_exit(cleanup_cs4232);
#ifndef MODULE
static int __init setup_cs4232(char *str)
{
/* io, irq, dma, dma2 mpuio, mpuirq*/
int ints[7];
/* If we have isapnp cards, no need for options */
pnp_register_driver(&cs4232_driver);
if (cs4232_devices)
return 1;
str = get_options(str, ARRAY_SIZE(ints), ints);
io = ints[1];
irq = ints[2];
dma = ints[3];
dma2 = ints[4];
mpuio = ints[5];
mpuirq = ints[6];
return 1;
}
__setup("cs4232=", setup_cs4232);
#endif
/*
* Intel i810 and friends ICH driver for Linux
* Alan Cox <alan@redhat.com>
*
* Built from:
* Low level code: Zach Brown (original nonworking i810 OSS driver)
* Jaroslav Kysela <perex@suse.cz> (working ALSA driver)
*
* Framework: Thomas Sailer <sailer@ife.ee.ethz.ch>
* Extended by: Zach Brown <zab@redhat.com>
* and others..
*
* Hardware Provided By:
* Analog Devices (A major AC97 codec maker)
* Intel Corp (you've probably heard of them already)
*
* AC97 clues and assistance provided by
* Analog Devices
* Zach 'Fufu' Brown
* Jeff Garzik
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
*
* Intel 810 theory of operation
*
* The chipset provides three DMA channels that talk to an AC97
* CODEC (AC97 is a digital/analog mixer standard). At its simplest
* you get 48Khz audio with basic volume and mixer controls. At the
* best you get rate adaption in the codec. We set the card up so
* that we never take completion interrupts but instead keep the card
* chasing its tail around a ring buffer. This is needed for mmap
* mode audio and happens to work rather well for non-mmap modes too.
*
* The board has one output channel for PCM audio (supported) and
* a stereo line in and mono microphone input. Again these are normally
* locked to 48Khz only. Right now recording is not finished.
*
* There is no midi support, no synth support. Use timidity. To get
* esd working you need to use esd -r 48000 as it won't probe 48KHz
* by default. mpg123 can't handle 48Khz only audio so use xmms.
*
* Fix The Sound On Dell
*
* Not everyone uses 48KHz. We know of no way to detect this reliably
* and certainly not to get the right data. If your i810 audio sounds
* stupid you may need to investigate other speeds. According to Analog
* they tend to use a 14.318MHz clock which gives you a base rate of
* 41194Hz.
*
* This is available via the 'ftsodell=1' option.
*
* If you need to force a specific rate set the clocking= option
*
* This driver is cursed. (Ben LaHaise)
*
* ICH 3 caveats
* Intel errata #7 for ICH3 IO. We need to disable SMI stuff
* when codec probing. [Not Yet Done]
*
* ICH 4 caveats
*
* The ICH4 has the feature, that the codec ID doesn't have to be
* congruent with the IO connection.
*
* Therefore, from driver version 0.23 on, there is a "codec ID" <->
* "IO register base offset" mapping (card->ac97_id_map) field.
*
* Juergen "George" Sawinski (jsaw)
*/
#include <linux/module.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/ioport.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/sound.h>
#include <linux/slab.h>
#include <linux/soundcard.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <asm/io.h>
#include <asm/dma.h>
#include <linux/init.h>
#include <linux/poll.h>
#include <linux/spinlock.h>
#include <linux/smp_lock.h>
#include <linux/ac97_codec.h>
#include <linux/bitops.h>
#include <linux/mutex.h>
#include <linux/mm.h>
#include <asm/uaccess.h>
#define DRIVER_VERSION "1.01"
#define MODULOP2(a, b) ((a) & ((b) - 1))
#define MASKP2(a, b) ((a) & ~((b) - 1))
static int ftsodell;
static int strict_clocking;
static unsigned int clocking;
static int spdif_locked;
static int ac97_quirk = AC97_TUNE_DEFAULT;
//#define DEBUG
//#define DEBUG2
//#define DEBUG_INTERRUPTS
//#define DEBUG_MMAP
//#define DEBUG_MMIO
#define ADC_RUNNING 1
#define DAC_RUNNING 2
#define I810_FMT_16BIT 1
#define I810_FMT_STEREO 2
#define I810_FMT_MASK 3
#define SPDIF_ON 0x0004
#define SURR_ON 0x0010
#define CENTER_LFE_ON 0x0020
#define VOL_MUTED 0x8000
/* the 810's array of pointers to data buffers */
struct sg_item {
#define BUSADDR_MASK 0xFFFFFFFE
u32 busaddr;
#define CON_IOC 0x80000000 /* interrupt on completion */
#define CON_BUFPAD 0x40000000 /* pad underrun with last sample, else 0 */
#define CON_BUFLEN_MASK 0x0000ffff /* buffer length in samples */
u32 control;
};
/* an instance of the i810 channel */
#define SG_LEN 32
struct i810_channel
{
/* these sg guys should probably be allocated
separately as nocache. Must be 8 byte aligned */
struct sg_item sg[SG_LEN]; /* 32*8 */
u32 offset; /* 4 */
u32 port; /* 4 */
u32 used;
u32 num;
};
/*
* we have 3 separate dma engines. pcm in, pcm out, and mic.
* each dma engine has controlling registers. These goofy
* names are from the datasheet, but make it easy to write
* code while leafing through it.
*
* ICH4 has 6 dma engines, pcm in, pcm out, mic, pcm in 2,
* mic in 2, s/pdif. Of special interest is the fact that
* the upper 3 DMA engines on the ICH4 *must* be accessed
* via mmio access instead of pio access.
*/
#define ENUM_ENGINE(PRE,DIG) \
enum { \
PRE##_BASE = 0x##DIG##0, /* Base Address */ \
PRE##_BDBAR = 0x##DIG##0, /* Buffer Descriptor list Base Address */ \
PRE##_CIV = 0x##DIG##4, /* Current Index Value */ \
PRE##_LVI = 0x##DIG##5, /* Last Valid Index */ \
PRE##_SR = 0x##DIG##6, /* Status Register */ \
PRE##_PICB = 0x##DIG##8, /* Position In Current Buffer */ \
PRE##_PIV = 0x##DIG##a, /* Prefetched Index Value */ \
PRE##_CR = 0x##DIG##b /* Control Register */ \
}
ENUM_ENGINE(OFF,0); /* Offsets */
ENUM_ENGINE(PI,0); /* PCM In */
ENUM_ENGINE(PO,1); /* PCM Out */
ENUM_ENGINE(MC,2); /* Mic In */
enum {
GLOB_CNT = 0x2c, /* Global Control */
GLOB_STA = 0x30, /* Global Status */
CAS = 0x34 /* Codec Write Semaphore Register */
};
ENUM_ENGINE(MC2,4); /* Mic In 2 */
ENUM_ENGINE(PI2,5); /* PCM In 2 */
ENUM_ENGINE(SP,6); /* S/PDIF */
enum {
SDM = 0x80 /* SDATA_IN Map Register */
};
/* interrupts for a dma engine */
#define DMA_INT_FIFO (1<<4) /* fifo under/over flow */
#define DMA_INT_COMPLETE (1<<3) /* buffer read/write complete and ioc set */
#define DMA_INT_LVI (1<<2) /* last valid done */
#define DMA_INT_CELV (1<<1) /* last valid is current */
#define DMA_INT_DCH (1) /* DMA Controller Halted (happens on LVI interrupts) */
#define DMA_INT_MASK (DMA_INT_FIFO|DMA_INT_COMPLETE|DMA_INT_LVI)
/* interrupts for the whole chip */
#define INT_SEC (1<<11)
#define INT_PRI (1<<10)
#define INT_MC (1<<7)
#define INT_PO (1<<6)
#define INT_PI (1<<5)
#define INT_MO (1<<2)
#define INT_NI (1<<1)
#define INT_GPI (1<<0)
#define INT_MASK (INT_SEC|INT_PRI|INT_MC|INT_PO|INT_PI|INT_MO|INT_NI|INT_GPI)
/* magic numbers to protect our data structures */
#define I810_CARD_MAGIC 0x5072696E /* "Prin" */
#define I810_STATE_MAGIC 0x63657373 /* "cess" */
#define I810_DMA_MASK 0xffffffff /* DMA buffer mask for pci_alloc_consist */
#define NR_HW_CH 3
/* maxinum number of AC97 codecs connected, AC97 2.0 defined 4 */
#define NR_AC97 4
/* Please note that an 8bit mono stream is not valid on this card, you must have a 16bit */
/* stream at a minimum for this card to be happy */
static const unsigned sample_size[] = { 1, 2, 2, 4 };
/* Samples are 16bit values, so we are shifting to a word, not to a byte, hence shift */
/* values are one less than might be expected */
static const unsigned sample_shift[] = { -1, 0, 0, 1 };
enum {
ICH82801AA = 0,
ICH82901AB,
INTEL440MX,
INTELICH2,
INTELICH3,
INTELICH4,
INTELICH5,
SI7012,
NVIDIA_NFORCE,
AMD768,
AMD8111
};
static char * card_names[] = {
"Intel ICH 82801AA",
"Intel ICH 82901AB",
"Intel 440MX",
"Intel ICH2",
"Intel ICH3",
"Intel ICH4",
"Intel ICH5",
"SiS 7012",
"NVIDIA nForce Audio",
"AMD 768",
"AMD-8111 IOHub"
};
/* These are capabilities (and bugs) the chipsets _can_ have */
static struct {
int16_t nr_ac97;
#define CAP_MMIO 0x0001
#define CAP_20BIT_AUDIO_SUPPORT 0x0002
u_int16_t flags;
} card_cap[] = {
{ 1, 0x0000 }, /* ICH82801AA */
{ 1, 0x0000 }, /* ICH82901AB */
{ 1, 0x0000 }, /* INTEL440MX */
{ 1, 0x0000 }, /* INTELICH2 */
{ 2, 0x0000 }, /* INTELICH3 */
{ 3, 0x0003 }, /* INTELICH4 */
{ 3, 0x0003 }, /* INTELICH5 */
/*@FIXME to be verified*/ { 2, 0x0000 }, /* SI7012 */
/*@FIXME to be verified*/ { 2, 0x0000 }, /* NVIDIA_NFORCE */
/*@FIXME to be verified*/ { 2, 0x0000 }, /* AMD768 */
/*@FIXME to be verified*/ { 3, 0x0001 }, /* AMD8111 */
};
static struct pci_device_id i810_pci_tbl [] = {
{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801AA_5,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, ICH82801AA},
{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801AB_5,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, ICH82901AB},
{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_440MX,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, INTEL440MX},
{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801BA_4,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, INTELICH2},
{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801CA_5,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, INTELICH3},
{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801DB_5,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, INTELICH4},
{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801EB_5,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, INTELICH5},
{PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_7012,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, SI7012},
{PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_MCP1_AUDIO,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, NVIDIA_NFORCE},
{PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_MCP2_AUDIO,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, NVIDIA_NFORCE},
{PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_MCP3_AUDIO,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, NVIDIA_NFORCE},
{PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_OPUS_7445,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, AMD768},
{PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_8111_AUDIO,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, AMD8111},
{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_ESB_5,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, INTELICH4},
{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_ICH6_18,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, INTELICH4},
{PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_CK804_AUDIO,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, NVIDIA_NFORCE},
{0,}
};
MODULE_DEVICE_TABLE (pci, i810_pci_tbl);
#ifdef CONFIG_PM
#define PM_SUSPENDED(card) (card->pm_suspended)
#else
#define PM_SUSPENDED(card) (0)
#endif
/* "software" or virtual channel, an instance of opened /dev/dsp */
struct i810_state {
unsigned int magic;
struct i810_card *card; /* Card info */
/* single open lock mechanism, only used for recording */
struct mutex open_mutex;
wait_queue_head_t open_wait;
/* file mode */
mode_t open_mode;
/* virtual channel number */
int virt;
#ifdef CONFIG_PM
unsigned int pm_saved_dac_rate,pm_saved_adc_rate;
#endif
struct dmabuf {
/* wave sample stuff */
unsigned int rate;
unsigned char fmt, enable, trigger;
/* hardware channel */
struct i810_channel *read_channel;
struct i810_channel *write_channel;
/* OSS buffer management stuff */
void *rawbuf;
dma_addr_t dma_handle;
unsigned buforder;
unsigned numfrag;
unsigned fragshift;
/* our buffer acts like a circular ring */
unsigned hwptr; /* where dma last started, updated by update_ptr */
unsigned swptr; /* where driver last clear/filled, updated by read/write */
int count; /* bytes to be consumed or been generated by dma machine */
unsigned total_bytes; /* total bytes dmaed by hardware */
unsigned error; /* number of over/underruns */
wait_queue_head_t wait; /* put process on wait queue when no more space in buffer */
/* redundant, but makes calculations easier */
/* what the hardware uses */
unsigned dmasize;
unsigned fragsize;
unsigned fragsamples;
/* what we tell the user to expect */
unsigned userfrags;
unsigned userfragsize;
/* OSS stuff */
unsigned mapped:1;
unsigned ready:1;
unsigned update_flag;
unsigned ossfragsize;
unsigned ossmaxfrags;
unsigned subdivision;
} dmabuf;
};
struct i810_card {
unsigned int magic;
/* We keep i810 cards in a linked list */
struct i810_card *next;
/* The i810 has a certain amount of cross channel interaction
so we use a single per card lock */
spinlock_t lock;
/* Control AC97 access serialization */
spinlock_t ac97_lock;
/* PCI device stuff */
struct pci_dev * pci_dev;
u16 pci_id;
u16 pci_id_internal; /* used to access card_cap[] */
#ifdef CONFIG_PM
u16 pm_suspended;
int pm_saved_mixer_settings[SOUND_MIXER_NRDEVICES][NR_AC97];
#endif
/* soundcore stuff */
int dev_audio;
/* structures for abstraction of hardware facilities, codecs, banks and channels*/
u16 ac97_id_map[NR_AC97];
struct ac97_codec *ac97_codec[NR_AC97];
struct i810_state *states[NR_HW_CH];
struct i810_channel *channel; /* 1:1 to states[] but diff. lifetime */
dma_addr_t chandma;
u16 ac97_features;
u16 ac97_status;
u16 channels;
/* hardware resources */
unsigned long ac97base;
unsigned long iobase;
u32 irq;
unsigned long ac97base_mmio_phys;
unsigned long iobase_mmio_phys;
u_int8_t __iomem *ac97base_mmio;
u_int8_t __iomem *iobase_mmio;
int use_mmio;
/* Function support */
struct i810_channel *(*alloc_pcm_channel)(struct i810_card *);
struct i810_channel *(*alloc_rec_pcm_channel)(struct i810_card *);
struct i810_channel *(*alloc_rec_mic_channel)(struct i810_card *);
void (*free_pcm_channel)(struct i810_card *, int chan);
/* We have a *very* long init time possibly, so use this to block */
/* attempts to open our devices before we are ready (stops oops'es) */
int initializing;
};
/* extract register offset from codec struct */
#define IO_REG_OFF(codec) (((struct i810_card *) codec->private_data)->ac97_id_map[codec->id])
#define I810_IOREAD(size, type, card, off) \
({ \
type val; \
if (card->use_mmio) \
val=read##size(card->iobase_mmio+off); \
else \
val=in##size(card->iobase+off); \
val; \
})
#define I810_IOREADL(card, off) I810_IOREAD(l, u32, card, off)
#define I810_IOREADW(card, off) I810_IOREAD(w, u16, card, off)
#define I810_IOREADB(card, off) I810_IOREAD(b, u8, card, off)
#define I810_IOWRITE(size, val, card, off) \
({ \
if (card->use_mmio) \
write##size(val, card->iobase_mmio+off); \
else \
out##size(val, card->iobase+off); \
})
#define I810_IOWRITEL(val, card, off) I810_IOWRITE(l, val, card, off)
#define I810_IOWRITEW(val, card, off) I810_IOWRITE(w, val, card, off)
#define I810_IOWRITEB(val, card, off) I810_IOWRITE(b, val, card, off)
#define GET_CIV(card, port) MODULOP2(I810_IOREADB((card), (port) + OFF_CIV), SG_LEN)
#define GET_LVI(card, port) MODULOP2(I810_IOREADB((card), (port) + OFF_LVI), SG_LEN)
/* set LVI from CIV */
#define CIV_TO_LVI(card, port, off) \
I810_IOWRITEB(MODULOP2(GET_CIV((card), (port)) + (off), SG_LEN), (card), (port) + OFF_LVI)
static struct ac97_quirk ac97_quirks[] __devinitdata = {
{
.vendor = 0x0e11,
.device = 0x00b8,
.name = "Compaq Evo D510C",
.type = AC97_TUNE_HP_ONLY
},
{
.vendor = 0x1028,
.device = 0x00d8,
.name = "Dell Precision 530", /* AD1885 */
.type = AC97_TUNE_HP_ONLY
},
{
.vendor = 0x1028,
.device = 0x0126,
.name = "Dell Optiplex GX260", /* AD1981A */
.type = AC97_TUNE_HP_ONLY
},
{
.vendor = 0x1028,
.device = 0x012d,
.name = "Dell Precision 450", /* AD1981B*/
.type = AC97_TUNE_HP_ONLY
},
{ /* FIXME: which codec? */
.vendor = 0x103c,
.device = 0x00c3,
.name = "Hewlett-Packard onboard",
.type = AC97_TUNE_HP_ONLY
},
{
.vendor = 0x103c,
.device = 0x12f1,
.name = "HP xw8200", /* AD1981B*/
.type = AC97_TUNE_HP_ONLY
},
{
.vendor = 0x103c,
.device = 0x3008,
.name = "HP xw4200", /* AD1981B*/
.type = AC97_TUNE_HP_ONLY
},
{
.vendor = 0x10f1,
.device = 0x2665,
.name = "Fujitsu-Siemens Celsius", /* AD1981? */
.type = AC97_TUNE_HP_ONLY
},
{
.vendor = 0x10f1,
.device = 0x2885,
.name = "AMD64 Mobo", /* ALC650 */
.type = AC97_TUNE_HP_ONLY
},
{
.vendor = 0x110a,
.device = 0x0056,
.name = "Fujitsu-Siemens Scenic", /* AD1981? */
.type = AC97_TUNE_HP_ONLY
},
{
.vendor = 0x11d4,
.device = 0x5375,
.name = "ADI AD1985 (discrete)",
.type = AC97_TUNE_HP_ONLY
},
{
.vendor = 0x1462,
.device = 0x5470,
.name = "MSI P4 ATX 645 Ultra",
.type = AC97_TUNE_HP_ONLY
},
{
.vendor = 0x1734,
.device = 0x0088,
.name = "Fujitsu-Siemens D1522", /* AD1981 */
.type = AC97_TUNE_HP_ONLY
},
{
.vendor = 0x8086,
.device = 0x4856,
.name = "Intel D845WN (82801BA)",
.type = AC97_TUNE_SWAP_HP
},
{
.vendor = 0x8086,
.device = 0x4d44,
.name = "Intel D850EMV2", /* AD1885 */
.type = AC97_TUNE_HP_ONLY
},
{
.vendor = 0x8086,
.device = 0x4d56,
.name = "Intel ICH/AD1885",
.type = AC97_TUNE_HP_ONLY
},
{
.vendor = 0x1028,
.device = 0x012d,
.name = "Dell Precision 450", /* AD1981B*/
.type = AC97_TUNE_HP_ONLY
},
{
.vendor = 0x103c,
.device = 0x3008,
.name = "HP xw4200", /* AD1981B*/
.type = AC97_TUNE_HP_ONLY
},
{
.vendor = 0x103c,
.device = 0x12f1,
.name = "HP xw8200", /* AD1981B*/
.type = AC97_TUNE_HP_ONLY
},
{ } /* terminator */
};
static struct i810_card *devs = NULL;
static int i810_open_mixdev(struct inode *inode, struct file *file);
static int i810_ioctl_mixdev(struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg);
static u16 i810_ac97_get(struct ac97_codec *dev, u8 reg);
static void i810_ac97_set(struct ac97_codec *dev, u8 reg, u16 data);
static u16 i810_ac97_get_mmio(struct ac97_codec *dev, u8 reg);
static void i810_ac97_set_mmio(struct ac97_codec *dev, u8 reg, u16 data);
static u16 i810_ac97_get_io(struct ac97_codec *dev, u8 reg);
static void i810_ac97_set_io(struct ac97_codec *dev, u8 reg, u16 data);
static struct i810_channel *i810_alloc_pcm_channel(struct i810_card *card)
{
if(card->channel[1].used==1)
return NULL;
card->channel[1].used=1;
return &card->channel[1];
}
static struct i810_channel *i810_alloc_rec_pcm_channel(struct i810_card *card)
{
if(card->channel[0].used==1)
return NULL;
card->channel[0].used=1;
return &card->channel[0];
}
static struct i810_channel *i810_alloc_rec_mic_channel(struct i810_card *card)
{
if(card->channel[2].used==1)
return NULL;
card->channel[2].used=1;
return &card->channel[2];
}
static void i810_free_pcm_channel(struct i810_card *card, int channel)
{
card->channel[channel].used=0;
}
static int i810_valid_spdif_rate ( struct ac97_codec *codec, int rate )
{
unsigned long id = 0L;
id = (i810_ac97_get(codec, AC97_VENDOR_ID1) << 16);
id |= i810_ac97_get(codec, AC97_VENDOR_ID2) & 0xffff;
#ifdef DEBUG
printk ( "i810_audio: codec = %s, codec_id = 0x%08lx\n", codec->name, id);
#endif
switch ( id ) {
case 0x41445361: /* AD1886 */
if (rate == 48000) {
return 1;
}
break;
default: /* all other codecs, until we know otherwiae */
if (rate == 48000 || rate == 44100 || rate == 32000) {
return 1;
}
break;
}
return (0);
}
/* i810_set_spdif_output
*
* Configure the S/PDIF output transmitter. When we turn on
* S/PDIF, we turn off the analog output. This may not be
* the right thing to do.
*
* Assumptions:
* The DSP sample rate must already be set to a supported
* S/PDIF rate (32kHz, 44.1kHz, or 48kHz) or we abort.
*/
static int i810_set_spdif_output(struct i810_state *state, int slots, int rate)
{
int vol;
int aud_reg;
int r = 0;
struct ac97_codec *codec = state->card->ac97_codec[0];
if(!codec->codec_ops->digital) {
state->card->ac97_status &= ~SPDIF_ON;
} else {
if ( slots == -1 ) { /* Turn off S/PDIF */
codec->codec_ops->digital(codec, 0, 0, 0);
/* If the volume wasn't muted before we turned on S/PDIF, unmute it */
if ( !(state->card->ac97_status & VOL_MUTED) ) {
aud_reg = i810_ac97_get(codec, AC97_MASTER_VOL_STEREO);
i810_ac97_set(codec, AC97_MASTER_VOL_STEREO, (aud_reg & ~VOL_MUTED));
}
state->card->ac97_status &= ~(VOL_MUTED | SPDIF_ON);
return 0;
}
vol = i810_ac97_get(codec, AC97_MASTER_VOL_STEREO);
state->card->ac97_status = vol & VOL_MUTED;
r = codec->codec_ops->digital(codec, slots, rate, 0);
if(r)
state->card->ac97_status |= SPDIF_ON;
else
state->card->ac97_status &= ~SPDIF_ON;
/* Mute the analog output */
/* Should this only mute the PCM volume??? */
i810_ac97_set(codec, AC97_MASTER_VOL_STEREO, (vol | VOL_MUTED));
}
return r;
}
/* i810_set_dac_channels
*
* Configure the codec's multi-channel DACs
*
* The logic is backwards. Setting the bit to 1 turns off the DAC.
*
* What about the ICH? We currently configure it using the
* SNDCTL_DSP_CHANNELS ioctl. If we're turnning on the DAC,
* does that imply that we want the ICH set to support
* these channels?
*
* TODO:
* vailidate that the codec really supports these DACs
* before turning them on.
*/
static void i810_set_dac_channels(struct i810_state *state, int channel)
{
int aud_reg;
struct ac97_codec *codec = state->card->ac97_codec[0];
/* No codec, no setup */
if(codec == NULL)
return;
aud_reg = i810_ac97_get(codec, AC97_EXTENDED_STATUS);
aud_reg |= AC97_EA_PRI | AC97_EA_PRJ | AC97_EA_PRK;
state->card->ac97_status &= ~(SURR_ON | CENTER_LFE_ON);
switch ( channel ) {
case 2: /* always enabled */
break;
case 4:
aud_reg &= ~AC97_EA_PRJ;
state->card->ac97_status |= SURR_ON;
break;
case 6:
aud_reg &= ~(AC97_EA_PRJ | AC97_EA_PRI | AC97_EA_PRK);
state->card->ac97_status |= SURR_ON | CENTER_LFE_ON;
break;
default:
break;
}
i810_ac97_set(codec, AC97_EXTENDED_STATUS, aud_reg);
}
/* set playback sample rate */
static unsigned int i810_set_dac_rate(struct i810_state * state, unsigned int rate)
{
struct dmabuf *dmabuf = &state->dmabuf;
u32 new_rate;
struct ac97_codec *codec=state->card->ac97_codec[0];
if(!(state->card->ac97_features&0x0001))
{
dmabuf->rate = clocking;
#ifdef DEBUG
printk("Asked for %d Hz, but ac97_features says we only do %dHz. Sorry!\n",
rate,clocking);
#endif
return clocking;
}
if (rate > 48000)
rate = 48000;
if (rate < 8000)
rate = 8000;
dmabuf->rate = rate;
/*
* Adjust for misclocked crap
*/
rate = ( rate * clocking)/48000;
if(strict_clocking && rate < 8000) {
rate = 8000;
dmabuf->rate = (rate * 48000)/clocking;
}
new_rate=ac97_set_dac_rate(codec, rate);
if(new_rate != rate) {
dmabuf->rate = (new_rate * 48000)/clocking;
}
#ifdef DEBUG
printk("i810_audio: called i810_set_dac_rate : asked for %d, got %d\n", rate, dmabuf->rate);
#endif
rate = new_rate;
return dmabuf->rate;
}
/* set recording sample rate */
static unsigned int i810_set_adc_rate(struct i810_state * state, unsigned int rate)
{
struct dmabuf *dmabuf = &state->dmabuf;
u32 new_rate;
struct ac97_codec *codec=state->card->ac97_codec[0];
if(!(state->card->ac97_features&0x0001))
{
dmabuf->rate = clocking;
return clocking;
}
if (rate > 48000)
rate = 48000;
if (rate < 8000)
rate = 8000;
dmabuf->rate = rate;
/*
* Adjust for misclocked crap
*/
rate = ( rate * clocking)/48000;
if(strict_clocking && rate < 8000) {
rate = 8000;
dmabuf->rate = (rate * 48000)/clocking;
}
new_rate = ac97_set_adc_rate(codec, rate);
if(new_rate != rate) {
dmabuf->rate = (new_rate * 48000)/clocking;
rate = new_rate;
}
#ifdef DEBUG
printk("i810_audio: called i810_set_adc_rate : rate = %d/%d\n", dmabuf->rate, rate);
#endif
return dmabuf->rate;
}
/* get current playback/recording dma buffer pointer (byte offset from LBA),
called with spinlock held! */
static inline unsigned i810_get_dma_addr(struct i810_state *state, int rec)
{
struct dmabuf *dmabuf = &state->dmabuf;
unsigned int civ, offset, port, port_picb, bytes = 2;
if (!dmabuf->enable)
return 0;
if (rec)
port = dmabuf->read_channel->port;
else
port = dmabuf->write_channel->port;
if(state->card->pci_id == PCI_DEVICE_ID_SI_7012) {
port_picb = port + OFF_SR;
bytes = 1;
} else
port_picb = port + OFF_PICB;
do {
civ = GET_CIV(state->card, port);
offset = I810_IOREADW(state->card, port_picb);
/* Must have a delay here! */
if(offset == 0)
udelay(1);
/* Reread both registers and make sure that that total
* offset from the first reading to the second is 0.
* There is an issue with SiS hardware where it will count
* picb down to 0, then update civ to the next value,
* then set the new picb to fragsize bytes. We can catch
* it between the civ update and the picb update, making
* it look as though we are 1 fragsize ahead of where we
* are. The next to we get the address though, it will
* be back in the right place, and we will suddenly think
* we just went forward dmasize - fragsize bytes, causing
* totally stupid *huge* dma overrun messages. We are
* assuming that the 1us delay is more than long enough
* that we won't have to worry about the chip still being
* out of sync with reality ;-)
*/
} while (civ != GET_CIV(state->card, port) || offset != I810_IOREADW(state->card, port_picb));
return (((civ + 1) * dmabuf->fragsize - (bytes * offset))
% dmabuf->dmasize);
}
/* Stop recording (lock held) */
static inline void __stop_adc(struct i810_state *state)
{
struct dmabuf *dmabuf = &state->dmabuf;
struct i810_card *card = state->card;
dmabuf->enable &= ~ADC_RUNNING;
I810_IOWRITEB(0, card, PI_CR);
// wait for the card to acknowledge shutdown
while( I810_IOREADB(card, PI_CR) != 0 ) ;
// now clear any latent interrupt bits (like the halt bit)
if(card->pci_id == PCI_DEVICE_ID_SI_7012)
I810_IOWRITEB( I810_IOREADB(card, PI_PICB), card, PI_PICB );
else
I810_IOWRITEB( I810_IOREADB(card, PI_SR), card, PI_SR );
I810_IOWRITEL( I810_IOREADL(card, GLOB_STA) & INT_PI, card, GLOB_STA);
}
static void stop_adc(struct i810_state *state)
{
struct i810_card *card = state->card;
unsigned long flags;
spin_lock_irqsave(&card->lock, flags);
__stop_adc(state);
spin_unlock_irqrestore(&card->lock, flags);
}
static inline void __start_adc(struct i810_state *state)
{
struct dmabuf *dmabuf = &state->dmabuf;
if (dmabuf->count < dmabuf->dmasize && dmabuf->ready && !dmabuf->enable &&
(dmabuf->trigger & PCM_ENABLE_INPUT)) {
dmabuf->enable |= ADC_RUNNING;
// Interrupt enable, LVI enable, DMA enable
I810_IOWRITEB(0x10 | 0x04 | 0x01, state->card, PI_CR);
}
}
static void start_adc(struct i810_state *state)
{
struct i810_card *card = state->card;
unsigned long flags;
spin_lock_irqsave(&card->lock, flags);
__start_adc(state);
spin_unlock_irqrestore(&card->lock, flags);
}
/* stop playback (lock held) */
static inline void __stop_dac(struct i810_state *state)
{
struct dmabuf *dmabuf = &state->dmabuf;
struct i810_card *card = state->card;
dmabuf->enable &= ~DAC_RUNNING;
I810_IOWRITEB(0, card, PO_CR);
// wait for the card to acknowledge shutdown
while( I810_IOREADB(card, PO_CR) != 0 ) ;
// now clear any latent interrupt bits (like the halt bit)
if(card->pci_id == PCI_DEVICE_ID_SI_7012)
I810_IOWRITEB( I810_IOREADB(card, PO_PICB), card, PO_PICB );
else
I810_IOWRITEB( I810_IOREADB(card, PO_SR), card, PO_SR );
I810_IOWRITEL( I810_IOREADL(card, GLOB_STA) & INT_PO, card, GLOB_STA);
}
static void stop_dac(struct i810_state *state)
{
struct i810_card *card = state->card;
unsigned long flags;
spin_lock_irqsave(&card->lock, flags);
__stop_dac(state);
spin_unlock_irqrestore(&card->lock, flags);
}
static inline void __start_dac(struct i810_state *state)
{
struct dmabuf *dmabuf = &state->dmabuf;
if (dmabuf->count > 0 && dmabuf->ready && !dmabuf->enable &&
(dmabuf->trigger & PCM_ENABLE_OUTPUT)) {
dmabuf->enable |= DAC_RUNNING;
// Interrupt enable, LVI enable, DMA enable
I810_IOWRITEB(0x10 | 0x04 | 0x01, state->card, PO_CR);
}
}
static void start_dac(struct i810_state *state)
{
struct i810_card *card = state->card;
unsigned long flags;
spin_lock_irqsave(&card->lock, flags);
__start_dac(state);
spin_unlock_irqrestore(&card->lock, flags);
}
#define DMABUF_DEFAULTORDER (16-PAGE_SHIFT)
#define DMABUF_MINORDER 1
/* allocate DMA buffer, playback and recording buffer should be allocated separately */
static int alloc_dmabuf(struct i810_state *state)
{
struct dmabuf *dmabuf = &state->dmabuf;
void *rawbuf= NULL;
int order, size;
struct page *page, *pend;
/* If we don't have any oss frag params, then use our default ones */
if(dmabuf->ossmaxfrags == 0)
dmabuf->ossmaxfrags = 4;
if(dmabuf->ossfragsize == 0)
dmabuf->ossfragsize = (PAGE_SIZE<<DMABUF_DEFAULTORDER)/dmabuf->ossmaxfrags;
size = dmabuf->ossfragsize * dmabuf->ossmaxfrags;
if(dmabuf->rawbuf && (PAGE_SIZE << dmabuf->buforder) == size)
return 0;
/* alloc enough to satisfy the oss params */
for (order = DMABUF_DEFAULTORDER; order >= DMABUF_MINORDER; order--) {
if ( (PAGE_SIZE<<order) > size )
continue;
if ((rawbuf = pci_alloc_consistent(state->card->pci_dev,
PAGE_SIZE << order,
&dmabuf->dma_handle)))
break;
}
if (!rawbuf)
return -ENOMEM;
#ifdef DEBUG
printk("i810_audio: allocated %ld (order = %d) bytes at %p\n",
PAGE_SIZE << order, order, rawbuf);
#endif
dmabuf->ready = dmabuf->mapped = 0;
dmabuf->rawbuf = rawbuf;
dmabuf->buforder = order;
/* now mark the pages as reserved; otherwise remap_pfn_range doesn't do what we want */
pend = virt_to_page(rawbuf + (PAGE_SIZE << order) - 1);
for (page = virt_to_page(rawbuf); page <= pend; page++)
SetPageReserved(page);
return 0;
}
/* free DMA buffer */
static void dealloc_dmabuf(struct i810_state *state)
{
struct dmabuf *dmabuf = &state->dmabuf;
struct page *page, *pend;
if (dmabuf->rawbuf) {
/* undo marking the pages as reserved */
pend = virt_to_page(dmabuf->rawbuf + (PAGE_SIZE << dmabuf->buforder) - 1);
for (page = virt_to_page(dmabuf->rawbuf); page <= pend; page++)
ClearPageReserved(page);
pci_free_consistent(state->card->pci_dev, PAGE_SIZE << dmabuf->buforder,
dmabuf->rawbuf, dmabuf->dma_handle);
}
dmabuf->rawbuf = NULL;
dmabuf->mapped = dmabuf->ready = 0;
}
static int prog_dmabuf(struct i810_state *state, unsigned rec)
{
struct dmabuf *dmabuf = &state->dmabuf;
struct i810_channel *c;
struct sg_item *sg;
unsigned long flags;
int ret;
unsigned fragint;
int i;
spin_lock_irqsave(&state->card->lock, flags);
if(dmabuf->enable & DAC_RUNNING)
__stop_dac(state);
if(dmabuf->enable & ADC_RUNNING)
__stop_adc(state);
dmabuf->total_bytes = 0;
dmabuf->count = dmabuf->error = 0;
dmabuf->swptr = dmabuf->hwptr = 0;
spin_unlock_irqrestore(&state->card->lock, flags);
/* allocate DMA buffer, let alloc_dmabuf determine if we are already
* allocated well enough or if we should replace the current buffer
* (assuming one is already allocated, if it isn't, then allocate it).
*/
if ((ret = alloc_dmabuf(state)))
return ret;
/* FIXME: figure out all this OSS fragment stuff */
/* I did, it now does what it should according to the OSS API. DL */
/* We may not have realloced our dmabuf, but the fragment size to
* fragment number ratio may have changed, so go ahead and reprogram
* things
*/
dmabuf->dmasize = PAGE_SIZE << dmabuf->buforder;
dmabuf->numfrag = SG_LEN;
dmabuf->fragsize = dmabuf->dmasize/dmabuf->numfrag;
dmabuf->fragsamples = dmabuf->fragsize >> 1;
dmabuf->fragshift = ffs(dmabuf->fragsize) - 1;
dmabuf->userfragsize = dmabuf->ossfragsize;
dmabuf->userfrags = dmabuf->dmasize/dmabuf->ossfragsize;
memset(dmabuf->rawbuf, 0, dmabuf->dmasize);
if(dmabuf->ossmaxfrags == 4) {
fragint = 8;
} else if (dmabuf->ossmaxfrags == 8) {
fragint = 4;
} else if (dmabuf->ossmaxfrags == 16) {
fragint = 2;
} else {
fragint = 1;
}
/*
* Now set up the ring
*/
if(dmabuf->read_channel)
c = dmabuf->read_channel;
else
c = dmabuf->write_channel;
while(c != NULL) {
sg=&c->sg[0];
/*
* Load up 32 sg entries and take an interrupt at half
* way (we might want more interrupts later..)
*/
for(i=0;i<dmabuf->numfrag;i++)
{
sg->busaddr=(u32)dmabuf->dma_handle+dmabuf->fragsize*i;
// the card will always be doing 16bit stereo
sg->control=dmabuf->fragsamples;
if(state->card->pci_id == PCI_DEVICE_ID_SI_7012)
sg->control <<= 1;
sg->control|=CON_BUFPAD;
// set us up to get IOC interrupts as often as needed to
// satisfy numfrag requirements, no more
if( ((i+1) % fragint) == 0) {
sg->control|=CON_IOC;
}
sg++;
}
spin_lock_irqsave(&state->card->lock, flags);
I810_IOWRITEB(2, state->card, c->port+OFF_CR); /* reset DMA machine */
while( I810_IOREADB(state->card, c->port+OFF_CR) & 0x02 ) ;
I810_IOWRITEL((u32)state->card->chandma +
c->num*sizeof(struct i810_channel),
state->card, c->port+OFF_BDBAR);
CIV_TO_LVI(state->card, c->port, 0);
spin_unlock_irqrestore(&state->card->lock, flags);
if(c != dmabuf->write_channel)
c = dmabuf->write_channel;
else
c = NULL;
}
/* set the ready flag for the dma buffer */
dmabuf->ready = 1;
#ifdef DEBUG
printk("i810_audio: prog_dmabuf, sample rate = %d, format = %d,\n\tnumfrag = %d, "
"fragsize = %d dmasize = %d\n",
dmabuf->rate, dmabuf->fmt, dmabuf->numfrag,
dmabuf->fragsize, dmabuf->dmasize);
#endif
return 0;
}
static void __i810_update_lvi(struct i810_state *state, int rec)
{
struct dmabuf *dmabuf = &state->dmabuf;
int x, port;
int trigger;
int count, fragsize;
void (*start)(struct i810_state *);
count = dmabuf->count;
if (rec) {
port = dmabuf->read_channel->port;
trigger = PCM_ENABLE_INPUT;
start = __start_adc;
count = dmabuf->dmasize - count;
} else {
port = dmabuf->write_channel->port;
trigger = PCM_ENABLE_OUTPUT;
start = __start_dac;
}
/* Do not process partial fragments. */
fragsize = dmabuf->fragsize;
if (count < fragsize)
return;
/* if we are currently stopped, then our CIV is actually set to our
* *last* sg segment and we are ready to wrap to the next. However,
* if we set our LVI to the last sg segment, then it won't wrap to
* the next sg segment, it won't even get a start. So, instead, when
* we are stopped, we set both the LVI value and also we increment
* the CIV value to the next sg segment to be played so that when
* we call start, things will operate properly. Since the CIV can't
* be written to directly for this purpose, we set the LVI to CIV + 1
* temporarily. Once the engine has started we set the LVI to its
* final value.
*/
if (!dmabuf->enable && dmabuf->ready) {
if (!(dmabuf->trigger & trigger))
return;
CIV_TO_LVI(state->card, port, 1);
start(state);
while (!(I810_IOREADB(state->card, port + OFF_CR) & ((1<<4) | (1<<2))))
;
}
/* MASKP2(swptr, fragsize) - 1 is the tail of our transfer */
x = MODULOP2(MASKP2(dmabuf->swptr, fragsize) - 1, dmabuf->dmasize);
x >>= dmabuf->fragshift;
I810_IOWRITEB(x, state->card, port + OFF_LVI);
}
static void i810_update_lvi(struct i810_state *state, int rec)
{
struct dmabuf *dmabuf = &state->dmabuf;
unsigned long flags;
if(!dmabuf->ready)
return;
spin_lock_irqsave(&state->card->lock, flags);
__i810_update_lvi(state, rec);
spin_unlock_irqrestore(&state->card->lock, flags);
}
/* update buffer manangement pointers, especially, dmabuf->count and dmabuf->hwptr */
static void i810_update_ptr(struct i810_state *state)
{
struct dmabuf *dmabuf = &state->dmabuf;
unsigned hwptr;
unsigned fragmask, dmamask;
int diff;
fragmask = MASKP2(~0, dmabuf->fragsize);
dmamask = MODULOP2(~0, dmabuf->dmasize);
/* error handling and process wake up for ADC */
if (dmabuf->enable == ADC_RUNNING) {
/* update hardware pointer */
hwptr = i810_get_dma_addr(state, 1) & fragmask;
diff = (hwptr - dmabuf->hwptr) & dmamask;
#if defined(DEBUG_INTERRUPTS) || defined(DEBUG_MMAP)
printk("ADC HWP %d,%d,%d\n", hwptr, dmabuf->hwptr, diff);
#endif
dmabuf->hwptr = hwptr;
dmabuf->total_bytes += diff;
dmabuf->count += diff;
if (dmabuf->count > dmabuf->dmasize) {
/* buffer underrun or buffer overrun */
/* this is normal for the end of a read */
/* only give an error if we went past the */
/* last valid sg entry */
if (GET_CIV(state->card, PI_BASE) !=
GET_LVI(state->card, PI_BASE)) {
printk(KERN_WARNING "i810_audio: DMA overrun on read\n");
dmabuf->error++;
}
}
if (diff)
wake_up(&dmabuf->wait);
}
/* error handling and process wake up for DAC */
if (dmabuf->enable == DAC_RUNNING) {
/* update hardware pointer */
hwptr = i810_get_dma_addr(state, 0) & fragmask;
diff = (hwptr - dmabuf->hwptr) & dmamask;
#if defined(DEBUG_INTERRUPTS) || defined(DEBUG_MMAP)
printk("DAC HWP %d,%d,%d\n", hwptr, dmabuf->hwptr, diff);
#endif
dmabuf->hwptr = hwptr;
dmabuf->total_bytes += diff;
dmabuf->count -= diff;
if (dmabuf->count < 0) {
/* buffer underrun or buffer overrun */
/* this is normal for the end of a write */
/* only give an error if we went past the */
/* last valid sg entry */
if (GET_CIV(state->card, PO_BASE) !=
GET_LVI(state->card, PO_BASE)) {
printk(KERN_WARNING "i810_audio: DMA overrun on write\n");
printk("i810_audio: CIV %d, LVI %d, hwptr %x, "
"count %d\n",
GET_CIV(state->card, PO_BASE),
GET_LVI(state->card, PO_BASE),
dmabuf->hwptr, dmabuf->count);
dmabuf->error++;
}
}
if (diff)
wake_up(&dmabuf->wait);
}
}
static inline int i810_get_free_write_space(struct i810_state *state)
{
struct dmabuf *dmabuf = &state->dmabuf;
int free;
i810_update_ptr(state);
// catch underruns during playback
if (dmabuf->count < 0) {
dmabuf->count = 0;
dmabuf->swptr = dmabuf->hwptr;
}
free = dmabuf->dmasize - dmabuf->count;
if(free < 0)
return(0);
return(free);
}
static inline int i810_get_available_read_data(struct i810_state *state)
{
struct dmabuf *dmabuf = &state->dmabuf;
int avail;
i810_update_ptr(state);
// catch overruns during record
if (dmabuf->count > dmabuf->dmasize) {
dmabuf->count = dmabuf->dmasize;
dmabuf->swptr = dmabuf->hwptr;
}
avail = dmabuf->count;
if(avail < 0)
return(0);
return(avail);
}
static inline void fill_partial_frag(struct dmabuf *dmabuf)
{
unsigned fragsize;
unsigned swptr, len;
fragsize = dmabuf->fragsize;
swptr = dmabuf->swptr;
len = fragsize - MODULOP2(dmabuf->swptr, fragsize);
if (len == fragsize)
return;
memset(dmabuf->rawbuf + swptr, '\0', len);
dmabuf->swptr = MODULOP2(swptr + len, dmabuf->dmasize);
dmabuf->count += len;
}
static int drain_dac(struct i810_state *state, int signals_allowed)
{
DECLARE_WAITQUEUE(wait, current);
struct dmabuf *dmabuf = &state->dmabuf;
unsigned long flags;
unsigned long tmo;
int count;
if (!dmabuf->ready)
return 0;
if(dmabuf->mapped) {
stop_dac(state);
return 0;
}
spin_lock_irqsave(&state->card->lock, flags);
fill_partial_frag(dmabuf);
/*
* This will make sure that our LVI is correct, that our
* pointer is updated, and that the DAC is running. We
* have to force the setting of dmabuf->trigger to avoid
* any possible deadlocks.
*/
dmabuf->trigger = PCM_ENABLE_OUTPUT;
__i810_update_lvi(state, 0);
spin_unlock_irqrestore(&state->card->lock, flags);
add_wait_queue(&dmabuf->wait, &wait);
for (;;) {
spin_lock_irqsave(&state->card->lock, flags);
i810_update_ptr(state);
count = dmabuf->count;
/* It seems that we have to set the current state to
* TASK_INTERRUPTIBLE every time to make the process
* really go to sleep. This also has to be *after* the
* update_ptr() call because update_ptr is likely to
* do a wake_up() which will unset this before we ever
* try to sleep, resuling in a tight loop in this code
* instead of actually sleeping and waiting for an
* interrupt to wake us up!
*/
__set_current_state(signals_allowed ?
TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
spin_unlock_irqrestore(&state->card->lock, flags);
if (count <= 0)
break;
if (signal_pending(current) && signals_allowed) {
break;
}
/*
* set the timeout to significantly longer than it *should*
* take for the DAC to drain the DMA buffer
*/
tmo = (count * HZ) / (dmabuf->rate);
if (!schedule_timeout(tmo >= 2 ? tmo : 2)){
printk(KERN_ERR "i810_audio: drain_dac, dma timeout?\n");
count = 0;
break;
}
}
set_current_state(TASK_RUNNING);
remove_wait_queue(&dmabuf->wait, &wait);
if(count > 0 && signal_pending(current) && signals_allowed)
return -ERESTARTSYS;
stop_dac(state);
return 0;
}
static void i810_channel_interrupt(struct i810_card *card)
{
int i, count;
#ifdef DEBUG_INTERRUPTS
printk("CHANNEL ");
#endif
for(i=0;i<NR_HW_CH;i++)
{
struct i810_state *state = card->states[i];
struct i810_channel *c;
struct dmabuf *dmabuf;
unsigned long port;
u16 status;
if(!state)
continue;
if(!state->dmabuf.ready)
continue;
dmabuf = &state->dmabuf;
if(dmabuf->enable & DAC_RUNNING) {
c=dmabuf->write_channel;
} else if(dmabuf->enable & ADC_RUNNING) {
c=dmabuf->read_channel;
} else /* This can occur going from R/W to close */
continue;
port = c->port;
if(card->pci_id == PCI_DEVICE_ID_SI_7012)
status = I810_IOREADW(card, port + OFF_PICB);
else
status = I810_IOREADW(card, port + OFF_SR);
#ifdef DEBUG_INTERRUPTS
printk("NUM %d PORT %X IRQ ( ST%d ", c->num, c->port, status);
#endif
if(status & DMA_INT_COMPLETE)
{
/* only wake_up() waiters if this interrupt signals
* us being beyond a userfragsize of data open or
* available, and i810_update_ptr() does that for
* us
*/
i810_update_ptr(state);
#ifdef DEBUG_INTERRUPTS
printk("COMP %d ", dmabuf->hwptr /
dmabuf->fragsize);
#endif
}
if(status & (DMA_INT_LVI | DMA_INT_DCH))
{
/* wake_up() unconditionally on LVI and DCH */
i810_update_ptr(state);
wake_up(&dmabuf->wait);
#ifdef DEBUG_INTERRUPTS
if(status & DMA_INT_LVI)
printk("LVI ");
if(status & DMA_INT_DCH)
printk("DCH -");
#endif
count = dmabuf->count;
if(dmabuf->enable & ADC_RUNNING)
count = dmabuf->dmasize - count;
if (count >= (int)dmabuf->fragsize) {
I810_IOWRITEB(I810_IOREADB(card, port+OFF_CR) | 1, card, port+OFF_CR);
#ifdef DEBUG_INTERRUPTS
printk(" CONTINUE ");
#endif
} else {
if (dmabuf->enable & DAC_RUNNING)
__stop_dac(state);
if (dmabuf->enable & ADC_RUNNING)
__stop_adc(state);
dmabuf->enable = 0;
#ifdef DEBUG_INTERRUPTS
printk(" STOP ");
#endif
}
}
if(card->pci_id == PCI_DEVICE_ID_SI_7012)
I810_IOWRITEW(status & DMA_INT_MASK, card, port + OFF_PICB);
else
I810_IOWRITEW(status & DMA_INT_MASK, card, port + OFF_SR);
}
#ifdef DEBUG_INTERRUPTS
printk(")\n");
#endif
}
static irqreturn_t i810_interrupt(int irq, void *dev_id)
{
struct i810_card *card = dev_id;
u32 status;
spin_lock(&card->lock);
status = I810_IOREADL(card, GLOB_STA);
if(!(status & INT_MASK))
{
spin_unlock(&card->lock);
return IRQ_NONE; /* not for us */
}
if(status & (INT_PO|INT_PI|INT_MC))
i810_channel_interrupt(card);
/* clear 'em */
I810_IOWRITEL(status & INT_MASK, card, GLOB_STA);
spin_unlock(&card->lock);
return IRQ_HANDLED;
}
/* in this loop, dmabuf.count signifies the amount of data that is
waiting to be copied to the user's buffer. It is filled by the dma
machine and drained by this loop. */
static ssize_t i810_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos)
{
struct i810_state *state = (struct i810_state *)file->private_data;
struct i810_card *card=state ? state->card : NULL;
struct dmabuf *dmabuf = &state->dmabuf;
ssize_t ret;
unsigned long flags;
unsigned int swptr;
int cnt;
int pending;
DECLARE_WAITQUEUE(waita, current);
#ifdef DEBUG2
printk("i810_audio: i810_read called, count = %d\n", count);
#endif
if (dmabuf->mapped)
return -ENXIO;
if (dmabuf->enable & DAC_RUNNING)
return -ENODEV;
if (!dmabuf->read_channel) {
dmabuf->ready = 0;
dmabuf->read_channel = card->alloc_rec_pcm_channel(card);
if (!dmabuf->read_channel) {
return -EBUSY;
}
}
if (!dmabuf->ready && (ret = prog_dmabuf(state, 1)))
return ret;
if (!access_ok(VERIFY_WRITE, buffer, count))
return -EFAULT;
ret = 0;
pending = 0;
add_wait_queue(&dmabuf->wait, &waita);
while (count > 0) {
set_current_state(TASK_INTERRUPTIBLE);
spin_lock_irqsave(&card->lock, flags);
if (PM_SUSPENDED(card)) {
spin_unlock_irqrestore(&card->lock, flags);
schedule();
if (signal_pending(current)) {
if (!ret) ret = -EAGAIN;
break;
}
continue;
}
cnt = i810_get_available_read_data(state);
swptr = dmabuf->swptr;
// this is to make the copy_to_user simpler below
if(cnt > (dmabuf->dmasize - swptr))
cnt = dmabuf->dmasize - swptr;
spin_unlock_irqrestore(&card->lock, flags);
if (cnt > count)
cnt = count;
if (cnt <= 0) {
unsigned long tmo;
/*
* Don't let us deadlock. The ADC won't start if
* dmabuf->trigger isn't set. A call to SETTRIGGER
* could have turned it off after we set it to on
* previously.
*/
dmabuf->trigger = PCM_ENABLE_INPUT;
/*
* This does three things. Updates LVI to be correct,
* makes sure the ADC is running, and updates the
* hwptr.
*/
i810_update_lvi(state,1);
if (file->f_flags & O_NONBLOCK) {
if (!ret) ret = -EAGAIN;
goto done;
}
/* Set the timeout to how long it would take to fill
* two of our buffers. If we haven't been woke up
* by then, then we know something is wrong.
*/
tmo = (dmabuf->dmasize * HZ * 2) / (dmabuf->rate * 4);
/* There are two situations when sleep_on_timeout returns, one is when
the interrupt is serviced correctly and the process is waked up by
ISR ON TIME. Another is when timeout is expired, which means that
either interrupt is NOT serviced correctly (pending interrupt) or it
is TOO LATE for the process to be scheduled to run (scheduler latency)
which results in a (potential) buffer overrun. And worse, there is
NOTHING we can do to prevent it. */
if (!schedule_timeout(tmo >= 2 ? tmo : 2)) {
#ifdef DEBUG
printk(KERN_ERR "i810_audio: recording schedule timeout, "
"dmasz %u fragsz %u count %i hwptr %u swptr %u\n",
dmabuf->dmasize, dmabuf->fragsize, dmabuf->count,
dmabuf->hwptr, dmabuf->swptr);
#endif
/* a buffer overrun, we delay the recovery until next time the
while loop begin and we REALLY have space to record */
}
if (signal_pending(current)) {
ret = ret ? ret : -ERESTARTSYS;
goto done;
}
continue;
}
if (copy_to_user(buffer, dmabuf->rawbuf + swptr, cnt)) {
if (!ret) ret = -EFAULT;
goto done;
}
swptr = MODULOP2(swptr + cnt, dmabuf->dmasize);
spin_lock_irqsave(&card->lock, flags);
if (PM_SUSPENDED(card)) {
spin_unlock_irqrestore(&card->lock, flags);
continue;
}
dmabuf->swptr = swptr;
pending = dmabuf->count -= cnt;
spin_unlock_irqrestore(&card->lock, flags);
count -= cnt;
buffer += cnt;
ret += cnt;
}
done:
pending = dmabuf->dmasize - pending;
if (dmabuf->enable || pending >= dmabuf->userfragsize)
i810_update_lvi(state, 1);
set_current_state(TASK_RUNNING);
remove_wait_queue(&dmabuf->wait, &waita);
return ret;
}
/* in this loop, dmabuf.count signifies the amount of data that is waiting to be dma to
the soundcard. it is drained by the dma machine and filled by this loop. */
static ssize_t i810_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos)
{
struct i810_state *state = (struct i810_state *)file->private_data;
struct i810_card *card=state ? state->card : NULL;
struct dmabuf *dmabuf = &state->dmabuf;
ssize_t ret;
unsigned long flags;
unsigned int swptr = 0;
int pending;
int cnt;
DECLARE_WAITQUEUE(waita, current);
#ifdef DEBUG2
printk("i810_audio: i810_write called, count = %d\n", count);
#endif
if (dmabuf->mapped)
return -ENXIO;
if (dmabuf->enable & ADC_RUNNING)
return -ENODEV;
if (!dmabuf->write_channel) {
dmabuf->ready = 0;
dmabuf->write_channel = card->alloc_pcm_channel(card);
if(!dmabuf->write_channel)
return -EBUSY;
}
if (!dmabuf->ready && (ret = prog_dmabuf(state, 0)))
return ret;
if (!access_ok(VERIFY_READ, buffer, count))
return -EFAULT;
ret = 0;
pending = 0;
add_wait_queue(&dmabuf->wait, &waita);
while (count > 0) {
set_current_state(TASK_INTERRUPTIBLE);
spin_lock_irqsave(&state->card->lock, flags);
if (PM_SUSPENDED(card)) {
spin_unlock_irqrestore(&card->lock, flags);
schedule();
if (signal_pending(current)) {
if (!ret) ret = -EAGAIN;
break;
}
continue;
}
cnt = i810_get_free_write_space(state);
swptr = dmabuf->swptr;
/* Bound the maximum size to how much we can copy to the
* dma buffer before we hit the end. If we have more to
* copy then it will get done in a second pass of this
* loop starting from the beginning of the buffer.
*/
if(cnt > (dmabuf->dmasize - swptr))
cnt = dmabuf->dmasize - swptr;
spin_unlock_irqrestore(&state->card->lock, flags);
#ifdef DEBUG2
printk(KERN_INFO "i810_audio: i810_write: %d bytes available space\n", cnt);
#endif
if (cnt > count)
cnt = count;
if (cnt <= 0) {
unsigned long tmo;
// There is data waiting to be played
/*
* Force the trigger setting since we would
* deadlock with it set any other way
*/
dmabuf->trigger = PCM_ENABLE_OUTPUT;
i810_update_lvi(state,0);
if (file->f_flags & O_NONBLOCK) {
if (!ret) ret = -EAGAIN;
goto ret;
}
/* Not strictly correct but works */
tmo = (dmabuf->dmasize * HZ * 2) / (dmabuf->rate * 4);
/* There are two situations when sleep_on_timeout returns, one is when
the interrupt is serviced correctly and the process is waked up by
ISR ON TIME. Another is when timeout is expired, which means that
either interrupt is NOT serviced correctly (pending interrupt) or it
is TOO LATE for the process to be scheduled to run (scheduler latency)
which results in a (potential) buffer underrun. And worse, there is
NOTHING we can do to prevent it. */
if (!schedule_timeout(tmo >= 2 ? tmo : 2)) {
#ifdef DEBUG
printk(KERN_ERR "i810_audio: playback schedule timeout, "
"dmasz %u fragsz %u count %i hwptr %u swptr %u\n",
dmabuf->dmasize, dmabuf->fragsize, dmabuf->count,
dmabuf->hwptr, dmabuf->swptr);
#endif
/* a buffer underrun, we delay the recovery until next time the
while loop begin and we REALLY have data to play */
//return ret;
}
if (signal_pending(current)) {
if (!ret) ret = -ERESTARTSYS;
goto ret;
}
continue;
}
if (copy_from_user(dmabuf->rawbuf+swptr,buffer,cnt)) {
if (!ret) ret = -EFAULT;
goto ret;
}
swptr = MODULOP2(swptr + cnt, dmabuf->dmasize);
spin_lock_irqsave(&state->card->lock, flags);
if (PM_SUSPENDED(card)) {
spin_unlock_irqrestore(&card->lock, flags);
continue;
}
dmabuf->swptr = swptr;
pending = dmabuf->count += cnt;
count -= cnt;
buffer += cnt;
ret += cnt;
spin_unlock_irqrestore(&state->card->lock, flags);
}
ret:
if (dmabuf->enable || pending >= dmabuf->userfragsize)
i810_update_lvi(state, 0);
set_current_state(TASK_RUNNING);
remove_wait_queue(&dmabuf->wait, &waita);
return ret;
}
/* No kernel lock - we have our own spinlock */
static unsigned int i810_poll(struct file *file, struct poll_table_struct *wait)
{
struct i810_state *state = (struct i810_state *)file->private_data;
struct dmabuf *dmabuf = &state->dmabuf;
unsigned long flags;
unsigned int mask = 0;
if(!dmabuf->ready)
return 0;
poll_wait(file, &dmabuf->wait, wait);
spin_lock_irqsave(&state->card->lock, flags);
if (dmabuf->enable & ADC_RUNNING ||
dmabuf->trigger & PCM_ENABLE_INPUT) {
if (i810_get_available_read_data(state) >=
(signed)dmabuf->userfragsize)
mask |= POLLIN | POLLRDNORM;
}
if (dmabuf->enable & DAC_RUNNING ||
dmabuf->trigger & PCM_ENABLE_OUTPUT) {
if (i810_get_free_write_space(state) >=
(signed)dmabuf->userfragsize)
mask |= POLLOUT | POLLWRNORM;
}
spin_unlock_irqrestore(&state->card->lock, flags);
return mask;
}
static int i810_mmap(struct file *file, struct vm_area_struct *vma)
{
struct i810_state *state = (struct i810_state *)file->private_data;
struct dmabuf *dmabuf = &state->dmabuf;
int ret = -EINVAL;
unsigned long size;
lock_kernel();
if (vma->vm_flags & VM_WRITE) {
if (!dmabuf->write_channel &&
(dmabuf->write_channel =
state->card->alloc_pcm_channel(state->card)) == NULL) {
ret = -EBUSY;
goto out;
}
}
if (vma->vm_flags & VM_READ) {
if (!dmabuf->read_channel &&
(dmabuf->read_channel =
state->card->alloc_rec_pcm_channel(state->card)) == NULL) {
ret = -EBUSY;
goto out;
}
}
if ((ret = prog_dmabuf(state, 0)) != 0)
goto out;
ret = -EINVAL;
if (vma->vm_pgoff != 0)
goto out;
size = vma->vm_end - vma->vm_start;
if (size > (PAGE_SIZE << dmabuf->buforder))
goto out;
ret = -EAGAIN;
if (remap_pfn_range(vma, vma->vm_start,
virt_to_phys(dmabuf->rawbuf) >> PAGE_SHIFT,
size, vma->vm_page_prot))
goto out;
dmabuf->mapped = 1;
dmabuf->trigger = 0;
ret = 0;
#ifdef DEBUG_MMAP
printk("i810_audio: mmap'ed %ld bytes of data space\n", size);
#endif
out:
unlock_kernel();
return ret;
}
static int i810_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
{
struct i810_state *state = (struct i810_state *)file->private_data;
struct i810_channel *c = NULL;
struct dmabuf *dmabuf = &state->dmabuf;
unsigned long flags;
audio_buf_info abinfo;
count_info cinfo;
unsigned int i_glob_cnt;
int val = 0, ret;
struct ac97_codec *codec = state->card->ac97_codec[0];
void __user *argp = (void __user *)arg;
int __user *p = argp;
#ifdef DEBUG
printk("i810_audio: i810_ioctl, arg=0x%x, cmd=", arg ? *p : 0);
#endif
switch (cmd)
{
case OSS_GETVERSION:
#ifdef DEBUG
printk("OSS_GETVERSION\n");
#endif
return put_user(SOUND_VERSION, p);
case SNDCTL_DSP_RESET:
#ifdef DEBUG
printk("SNDCTL_DSP_RESET\n");
#endif
spin_lock_irqsave(&state->card->lock, flags);
if (dmabuf->enable == DAC_RUNNING) {
c = dmabuf->write_channel;
__stop_dac(state);
}
if (dmabuf->enable == ADC_RUNNING) {
c = dmabuf->read_channel;
__stop_adc(state);
}
if (c != NULL) {
I810_IOWRITEB(2, state->card, c->port+OFF_CR); /* reset DMA machine */
while ( I810_IOREADB(state->card, c->port+OFF_CR) & 2 )
cpu_relax();
I810_IOWRITEL((u32)state->card->chandma +
c->num*sizeof(struct i810_channel),
state->card, c->port+OFF_BDBAR);
CIV_TO_LVI(state->card, c->port, 0);
}
spin_unlock_irqrestore(&state->card->lock, flags);
synchronize_irq(state->card->pci_dev->irq);
dmabuf->ready = 0;
dmabuf->swptr = dmabuf->hwptr = 0;
dmabuf->count = dmabuf->total_bytes = 0;
return 0;
case SNDCTL_DSP_SYNC:
#ifdef DEBUG
printk("SNDCTL_DSP_SYNC\n");
#endif
if (dmabuf->enable != DAC_RUNNING || file->f_flags & O_NONBLOCK)
return 0;
if((val = drain_dac(state, 1)))
return val;
dmabuf->total_bytes = 0;
return 0;
case SNDCTL_DSP_SPEED: /* set smaple rate */
#ifdef DEBUG
printk("SNDCTL_DSP_SPEED\n");
#endif
if (get_user(val, p))
return -EFAULT;
if (val >= 0) {
if (file->f_mode & FMODE_WRITE) {
if ( (state->card->ac97_status & SPDIF_ON) ) { /* S/PDIF Enabled */
/* AD1886 only supports 48000, need to check that */
if ( i810_valid_spdif_rate ( codec, val ) ) {
/* Set DAC rate */
i810_set_spdif_output ( state, -1, 0 );
stop_dac(state);
dmabuf->ready = 0;
spin_lock_irqsave(&state->card->lock, flags);
i810_set_dac_rate(state, val);
spin_unlock_irqrestore(&state->card->lock, flags);
/* Set S/PDIF transmitter rate. */
i810_set_spdif_output ( state, AC97_EA_SPSA_3_4, val );
if ( ! (state->card->ac97_status & SPDIF_ON) ) {
val = dmabuf->rate;
}
} else { /* Not a valid rate for S/PDIF, ignore it */
val = dmabuf->rate;
}
} else {
stop_dac(state);
dmabuf->ready = 0;
spin_lock_irqsave(&state->card->lock, flags);
i810_set_dac_rate(state, val);
spin_unlock_irqrestore(&state->card->lock, flags);
}
}
if (file->f_mode & FMODE_READ) {
stop_adc(state);
dmabuf->ready = 0;
spin_lock_irqsave(&state->card->lock, flags);
i810_set_adc_rate(state, val);
spin_unlock_irqrestore(&state->card->lock, flags);
}
}
return put_user(dmabuf->rate, p);
case SNDCTL_DSP_STEREO: /* set stereo or mono channel */
#ifdef DEBUG
printk("SNDCTL_DSP_STEREO\n");
#endif
if (dmabuf->enable & DAC_RUNNING) {
stop_dac(state);
}
if (dmabuf->enable & ADC_RUNNING) {
stop_adc(state);
}
return put_user(1, p);
case SNDCTL_DSP_GETBLKSIZE:
if (file->f_mode & FMODE_WRITE) {
if (!dmabuf->ready && (val = prog_dmabuf(state, 0)))
return val;
}
if (file->f_mode & FMODE_READ) {
if (!dmabuf->ready && (val = prog_dmabuf(state, 1)))
return val;
}
#ifdef DEBUG
printk("SNDCTL_DSP_GETBLKSIZE %d\n", dmabuf->userfragsize);
#endif
return put_user(dmabuf->userfragsize, p);
case SNDCTL_DSP_GETFMTS: /* Returns a mask of supported sample format*/
#ifdef DEBUG
printk("SNDCTL_DSP_GETFMTS\n");
#endif
return put_user(AFMT_S16_LE, p);
case SNDCTL_DSP_SETFMT: /* Select sample format */
#ifdef DEBUG
printk("SNDCTL_DSP_SETFMT\n");
#endif
return put_user(AFMT_S16_LE, p);
case SNDCTL_DSP_CHANNELS:
#ifdef DEBUG
printk("SNDCTL_DSP_CHANNELS\n");
#endif
if (get_user(val, p))
return -EFAULT;
if (val > 0) {
if (dmabuf->enable & DAC_RUNNING) {
stop_dac(state);
}
if (dmabuf->enable & ADC_RUNNING) {
stop_adc(state);
}
} else {
return put_user(state->card->channels, p);
}
/* ICH and ICH0 only support 2 channels */
if ( state->card->pci_id == PCI_DEVICE_ID_INTEL_82801AA_5
|| state->card->pci_id == PCI_DEVICE_ID_INTEL_82801AB_5)
return put_user(2, p);
/* Multi-channel support was added with ICH2. Bits in */
/* Global Status and Global Control register are now */
/* used to indicate this. */
i_glob_cnt = I810_IOREADL(state->card, GLOB_CNT);
/* Current # of channels enabled */
if ( i_glob_cnt & 0x0100000 )
ret = 4;
else if ( i_glob_cnt & 0x0200000 )
ret = 6;
else
ret = 2;
switch ( val ) {
case 2: /* 2 channels is always supported */
I810_IOWRITEL(i_glob_cnt & 0xffcfffff,
state->card, GLOB_CNT);
/* Do we need to change mixer settings???? */
break;
case 4: /* Supported on some chipsets, better check first */
if ( state->card->channels >= 4 ) {
I810_IOWRITEL((i_glob_cnt & 0xffcfffff) | 0x100000,
state->card, GLOB_CNT);
/* Do we need to change mixer settings??? */
} else {
val = ret;
}
break;
case 6: /* Supported on some chipsets, better check first */
if ( state->card->channels >= 6 ) {
I810_IOWRITEL((i_glob_cnt & 0xffcfffff) | 0x200000,
state->card, GLOB_CNT);
/* Do we need to change mixer settings??? */
} else {
val = ret;
}
break;
default: /* nothing else is ever supported by the chipset */
val = ret;
break;
}
return put_user(val, p);
case SNDCTL_DSP_POST: /* the user has sent all data and is notifying us */
/* we update the swptr to the end of the last sg segment then return */
#ifdef DEBUG
printk("SNDCTL_DSP_POST\n");
#endif
if(!dmabuf->ready || (dmabuf->enable != DAC_RUNNING))
return 0;
if((dmabuf->swptr % dmabuf->fragsize) != 0) {
val = dmabuf->fragsize - (dmabuf->swptr % dmabuf->fragsize);
dmabuf->swptr += val;
dmabuf->count += val;
}
return 0;
case SNDCTL_DSP_SUBDIVIDE:
if (dmabuf->subdivision)
return -EINVAL;
if (get_user(val, p))
return -EFAULT;
if (val != 1 && val != 2 && val != 4)
return -EINVAL;
#ifdef DEBUG
printk("SNDCTL_DSP_SUBDIVIDE %d\n", val);
#endif
dmabuf->subdivision = val;
dmabuf->ready = 0;
return 0;
case SNDCTL_DSP_SETFRAGMENT:
if (get_user(val, p))
return -EFAULT;
dmabuf->ossfragsize = 1<<(val & 0xffff);
dmabuf->ossmaxfrags = (val >> 16) & 0xffff;
if (!dmabuf->ossfragsize || !dmabuf->ossmaxfrags)
return -EINVAL;
/*
* Bound the frag size into our allowed range of 256 - 4096
*/
if (dmabuf->ossfragsize < 256)
dmabuf->ossfragsize = 256;
else if (dmabuf->ossfragsize > 4096)
dmabuf->ossfragsize = 4096;
/*
* The numfrags could be something reasonable, or it could
* be 0xffff meaning "Give me as much as possible". So,
* we check the numfrags * fragsize doesn't exceed our
* 64k buffer limit, nor is it less than our 8k minimum.
* If it fails either one of these checks, then adjust the
* number of fragments, not the size of them. It's OK if
* our number of fragments doesn't equal 32 or anything
* like our hardware based number now since we are using
* a different frag count for the hardware. Before we get
* into this though, bound the maxfrags to avoid overflow
* issues. A reasonable bound would be 64k / 256 since our
* maximum buffer size is 64k and our minimum frag size is
* 256. On the other end, our minimum buffer size is 8k and
* our maximum frag size is 4k, so the lower bound should
* be 2.
*/
if(dmabuf->ossmaxfrags > 256)
dmabuf->ossmaxfrags = 256;
else if (dmabuf->ossmaxfrags < 2)
dmabuf->ossmaxfrags = 2;
val = dmabuf->ossfragsize * dmabuf->ossmaxfrags;
while (val < 8192) {
val <<= 1;
dmabuf->ossmaxfrags <<= 1;
}
while (val > 65536) {
val >>= 1;
dmabuf->ossmaxfrags >>= 1;
}
dmabuf->ready = 0;
#ifdef DEBUG
printk("SNDCTL_DSP_SETFRAGMENT 0x%x, %d, %d\n", val,
dmabuf->ossfragsize, dmabuf->ossmaxfrags);
#endif
return 0;
case SNDCTL_DSP_GETOSPACE:
if (!(file->f_mode & FMODE_WRITE))
return -EINVAL;
if (!dmabuf->ready && (val = prog_dmabuf(state, 0)) != 0)
return val;
spin_lock_irqsave(&state->card->lock, flags);
i810_update_ptr(state);
abinfo.fragsize = dmabuf->userfragsize;
abinfo.fragstotal = dmabuf->userfrags;
if (dmabuf->mapped)
abinfo.bytes = dmabuf->dmasize;
else
abinfo.bytes = i810_get_free_write_space(state);
abinfo.fragments = abinfo.bytes / dmabuf->userfragsize;
spin_unlock_irqrestore(&state->card->lock, flags);
#if defined(DEBUG) || defined(DEBUG_MMAP)
printk("SNDCTL_DSP_GETOSPACE %d, %d, %d, %d\n", abinfo.bytes,
abinfo.fragsize, abinfo.fragments, abinfo.fragstotal);
#endif
return copy_to_user(argp, &abinfo, sizeof(abinfo)) ? -EFAULT : 0;
case SNDCTL_DSP_GETOPTR:
if (!(file->f_mode & FMODE_WRITE))
return -EINVAL;
if (!dmabuf->ready && (val = prog_dmabuf(state, 0)) != 0)
return val;
spin_lock_irqsave(&state->card->lock, flags);
val = i810_get_free_write_space(state);
cinfo.bytes = dmabuf->total_bytes;
cinfo.ptr = dmabuf->hwptr;
cinfo.blocks = val/dmabuf->userfragsize;
if (dmabuf->mapped && (dmabuf->trigger & PCM_ENABLE_OUTPUT)) {
dmabuf->count += val;
dmabuf->swptr = (dmabuf->swptr + val) % dmabuf->dmasize;
__i810_update_lvi(state, 0);
}
spin_unlock_irqrestore(&state->card->lock, flags);
#if defined(DEBUG) || defined(DEBUG_MMAP)
printk("SNDCTL_DSP_GETOPTR %d, %d, %d, %d\n", cinfo.bytes,
cinfo.blocks, cinfo.ptr, dmabuf->count);
#endif
return copy_to_user(argp, &cinfo, sizeof(cinfo)) ? -EFAULT : 0;
case SNDCTL_DSP_GETISPACE:
if (!(file->f_mode & FMODE_READ))
return -EINVAL;
if (!dmabuf->ready && (val = prog_dmabuf(state, 1)) != 0)
return val;
spin_lock_irqsave(&state->card->lock, flags);
abinfo.bytes = i810_get_available_read_data(state);
abinfo.fragsize = dmabuf->userfragsize;
abinfo.fragstotal = dmabuf->userfrags;
abinfo.fragments = abinfo.bytes / dmabuf->userfragsize;
spin_unlock_irqrestore(&state->card->lock, flags);
#if defined(DEBUG) || defined(DEBUG_MMAP)
printk("SNDCTL_DSP_GETISPACE %d, %d, %d, %d\n", abinfo.bytes,
abinfo.fragsize, abinfo.fragments, abinfo.fragstotal);
#endif
return copy_to_user(argp, &abinfo, sizeof(abinfo)) ? -EFAULT : 0;
case SNDCTL_DSP_GETIPTR:
if (!(file->f_mode & FMODE_READ))
return -EINVAL;
if (!dmabuf->ready && (val = prog_dmabuf(state, 0)) != 0)
return val;
spin_lock_irqsave(&state->card->lock, flags);
val = i810_get_available_read_data(state);
cinfo.bytes = dmabuf->total_bytes;
cinfo.blocks = val/dmabuf->userfragsize;
cinfo.ptr = dmabuf->hwptr;
if (dmabuf->mapped && (dmabuf->trigger & PCM_ENABLE_INPUT)) {
dmabuf->count -= val;
dmabuf->swptr = (dmabuf->swptr + val) % dmabuf->dmasize;
__i810_update_lvi(state, 1);
}
spin_unlock_irqrestore(&state->card->lock, flags);
#if defined(DEBUG) || defined(DEBUG_MMAP)
printk("SNDCTL_DSP_GETIPTR %d, %d, %d, %d\n", cinfo.bytes,
cinfo.blocks, cinfo.ptr, dmabuf->count);
#endif
return copy_to_user(argp, &cinfo, sizeof(cinfo)) ? -EFAULT : 0;
case SNDCTL_DSP_NONBLOCK:
#ifdef DEBUG
printk("SNDCTL_DSP_NONBLOCK\n");
#endif
file->f_flags |= O_NONBLOCK;
return 0;
case SNDCTL_DSP_GETCAPS:
#ifdef DEBUG
printk("SNDCTL_DSP_GETCAPS\n");
#endif
return put_user(DSP_CAP_REALTIME|DSP_CAP_TRIGGER|DSP_CAP_MMAP|DSP_CAP_BIND,
p);
case SNDCTL_DSP_GETTRIGGER:
val = 0;
#ifdef DEBUG
printk("SNDCTL_DSP_GETTRIGGER 0x%x\n", dmabuf->trigger);
#endif
return put_user(dmabuf->trigger, p);
case SNDCTL_DSP_SETTRIGGER:
if (get_user(val, p))
return -EFAULT;
#if defined(DEBUG) || defined(DEBUG_MMAP)
printk("SNDCTL_DSP_SETTRIGGER 0x%x\n", val);
#endif
/* silently ignore invalid PCM_ENABLE_xxx bits,
* like the other drivers do
*/
if (!(file->f_mode & FMODE_READ ))
val &= ~PCM_ENABLE_INPUT;
if (!(file->f_mode & FMODE_WRITE ))
val &= ~PCM_ENABLE_OUTPUT;
if((file->f_mode & FMODE_READ) && !(val & PCM_ENABLE_INPUT) && dmabuf->enable == ADC_RUNNING) {
stop_adc(state);
}
if((file->f_mode & FMODE_WRITE) && !(val & PCM_ENABLE_OUTPUT) && dmabuf->enable == DAC_RUNNING) {
stop_dac(state);
}
dmabuf->trigger = val;
if((val & PCM_ENABLE_OUTPUT) && !(dmabuf->enable & DAC_RUNNING)) {
if (!dmabuf->write_channel) {
dmabuf->ready = 0;
dmabuf->write_channel = state->card->alloc_pcm_channel(state->card);
if (!dmabuf->write_channel)
return -EBUSY;
}
if (!dmabuf->ready && (ret = prog_dmabuf(state, 0)))
return ret;
if (dmabuf->mapped) {
spin_lock_irqsave(&state->card->lock, flags);
i810_update_ptr(state);
dmabuf->count = 0;
dmabuf->swptr = dmabuf->hwptr;
dmabuf->count = i810_get_free_write_space(state);
dmabuf->swptr = (dmabuf->swptr + dmabuf->count) % dmabuf->dmasize;
spin_unlock_irqrestore(&state->card->lock, flags);
}
i810_update_lvi(state, 0);
start_dac(state);
}
if((val & PCM_ENABLE_INPUT) && !(dmabuf->enable & ADC_RUNNING)) {
if (!dmabuf->read_channel) {
dmabuf->ready = 0;
dmabuf->read_channel = state->card->alloc_rec_pcm_channel(state->card);
if (!dmabuf->read_channel)
return -EBUSY;
}
if (!dmabuf->ready && (ret = prog_dmabuf(state, 1)))
return ret;
if (dmabuf->mapped) {
spin_lock_irqsave(&state->card->lock, flags);
i810_update_ptr(state);
dmabuf->swptr = dmabuf->hwptr;
dmabuf->count = 0;
spin_unlock_irqrestore(&state->card->lock, flags);
}
i810_update_lvi(state, 1);
start_adc(state);
}
return 0;
case SNDCTL_DSP_SETDUPLEX:
#ifdef DEBUG
printk("SNDCTL_DSP_SETDUPLEX\n");
#endif
return -EINVAL;
case SNDCTL_DSP_GETODELAY:
if (!(file->f_mode & FMODE_WRITE))
return -EINVAL;
spin_lock_irqsave(&state->card->lock, flags);
i810_update_ptr(state);
val = dmabuf->count;
spin_unlock_irqrestore(&state->card->lock, flags);
#ifdef DEBUG
printk("SNDCTL_DSP_GETODELAY %d\n", dmabuf->count);
#endif
return put_user(val, p);
case SOUND_PCM_READ_RATE:
#ifdef DEBUG
printk("SOUND_PCM_READ_RATE %d\n", dmabuf->rate);
#endif
return put_user(dmabuf->rate, p);
case SOUND_PCM_READ_CHANNELS:
#ifdef DEBUG
printk("SOUND_PCM_READ_CHANNELS\n");
#endif
return put_user(2, p);
case SOUND_PCM_READ_BITS:
#ifdef DEBUG
printk("SOUND_PCM_READ_BITS\n");
#endif
return put_user(AFMT_S16_LE, p);
case SNDCTL_DSP_SETSPDIF: /* Set S/PDIF Control register */
#ifdef DEBUG
printk("SNDCTL_DSP_SETSPDIF\n");
#endif
if (get_user(val, p))
return -EFAULT;
/* Check to make sure the codec supports S/PDIF transmitter */
if((state->card->ac97_features & 4)) {
/* mask out the transmitter speed bits so the user can't set them */
val &= ~0x3000;
/* Add the current transmitter speed bits to the passed value */
ret = i810_ac97_get(codec, AC97_SPDIF_CONTROL);
val |= (ret & 0x3000);
i810_ac97_set(codec, AC97_SPDIF_CONTROL, val);
if(i810_ac97_get(codec, AC97_SPDIF_CONTROL) != val ) {
printk(KERN_ERR "i810_audio: Unable to set S/PDIF configuration to 0x%04x.\n", val);
return -EFAULT;
}
}
#ifdef DEBUG
else
printk(KERN_WARNING "i810_audio: S/PDIF transmitter not avalible.\n");
#endif
return put_user(val, p);
case SNDCTL_DSP_GETSPDIF: /* Get S/PDIF Control register */
#ifdef DEBUG
printk("SNDCTL_DSP_GETSPDIF\n");
#endif
if (get_user(val, p))
return -EFAULT;
/* Check to make sure the codec supports S/PDIF transmitter */
if(!(state->card->ac97_features & 4)) {
#ifdef DEBUG
printk(KERN_WARNING "i810_audio: S/PDIF transmitter not avalible.\n");
#endif
val = 0;
} else {
val = i810_ac97_get(codec, AC97_SPDIF_CONTROL);
}
//return put_user((val & 0xcfff), p);
return put_user(val, p);
case SNDCTL_DSP_GETCHANNELMASK:
#ifdef DEBUG
printk("SNDCTL_DSP_GETCHANNELMASK\n");
#endif
if (get_user(val, p))
return -EFAULT;
/* Based on AC'97 DAC support, not ICH hardware */
val = DSP_BIND_FRONT;
if ( state->card->ac97_features & 0x0004 )
val |= DSP_BIND_SPDIF;
if ( state->card->ac97_features & 0x0080 )
val |= DSP_BIND_SURR;
if ( state->card->ac97_features & 0x0140 )
val |= DSP_BIND_CENTER_LFE;
return put_user(val, p);
case SNDCTL_DSP_BIND_CHANNEL:
#ifdef DEBUG
printk("SNDCTL_DSP_BIND_CHANNEL\n");
#endif
if (get_user(val, p))
return -EFAULT;
if ( val == DSP_BIND_QUERY ) {
val = DSP_BIND_FRONT; /* Always report this as being enabled */
if ( state->card->ac97_status & SPDIF_ON )
val |= DSP_BIND_SPDIF;
else {
if ( state->card->ac97_status & SURR_ON )
val |= DSP_BIND_SURR;
if ( state->card->ac97_status & CENTER_LFE_ON )
val |= DSP_BIND_CENTER_LFE;
}
} else { /* Not a query, set it */
if (!(file->f_mode & FMODE_WRITE))
return -EINVAL;
if ( dmabuf->enable == DAC_RUNNING ) {
stop_dac(state);
}
if ( val & DSP_BIND_SPDIF ) { /* Turn on SPDIF */
/* Ok, this should probably define what slots
* to use. For now, we'll only set it to the
* defaults:
*
* non multichannel codec maps to slots 3&4
* 2 channel codec maps to slots 7&8
* 4 channel codec maps to slots 6&9
* 6 channel codec maps to slots 10&11
*
* there should be some way for the app to
* select the slot assignment.
*/
i810_set_spdif_output ( state, AC97_EA_SPSA_3_4, dmabuf->rate );
if ( !(state->card->ac97_status & SPDIF_ON) )
val &= ~DSP_BIND_SPDIF;
} else {
int mask;
int channels;
/* Turn off S/PDIF if it was on */
if ( state->card->ac97_status & SPDIF_ON )
i810_set_spdif_output ( state, -1, 0 );
mask = val & (DSP_BIND_FRONT | DSP_BIND_SURR | DSP_BIND_CENTER_LFE);
switch (mask) {
case DSP_BIND_FRONT:
channels = 2;
break;
case DSP_BIND_FRONT|DSP_BIND_SURR:
channels = 4;
break;
case DSP_BIND_FRONT|DSP_BIND_SURR|DSP_BIND_CENTER_LFE:
channels = 6;
break;
default:
val = DSP_BIND_FRONT;
channels = 2;
break;
}
i810_set_dac_channels ( state, channels );
/* check that they really got turned on */
if (!(state->card->ac97_status & SURR_ON))
val &= ~DSP_BIND_SURR;
if (!(state->card->ac97_status & CENTER_LFE_ON))
val &= ~DSP_BIND_CENTER_LFE;
}
}
return put_user(val, p);
case SNDCTL_DSP_MAPINBUF:
case SNDCTL_DSP_MAPOUTBUF:
case SNDCTL_DSP_SETSYNCRO:
case SOUND_PCM_WRITE_FILTER:
case SOUND_PCM_READ_FILTER:
#ifdef DEBUG
printk("SNDCTL_* -EINVAL\n");
#endif
return -EINVAL;
}
return -EINVAL;
}
static int i810_open(struct inode *inode, struct file *file)
{
int i = 0;
struct i810_card *card = devs;
struct i810_state *state = NULL;
struct dmabuf *dmabuf = NULL;
/* find an avaiable virtual channel (instance of /dev/dsp) */
while (card != NULL) {
/*
* If we are initializing and then fail, card could go
* away unuexpectedly while we are in the for() loop.
* So, check for card on each iteration before we check
* for card->initializing to avoid a possible oops.
* This usually only matters for times when the driver is
* autoloaded by kmod.
*/
for (i = 0; i < 50 && card && card->initializing; i++) {
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(HZ/20);
}
for (i = 0; i < NR_HW_CH && card && !card->initializing; i++) {
if (card->states[i] == NULL) {
state = card->states[i] = (struct i810_state *)
kzalloc(sizeof(struct i810_state), GFP_KERNEL);
if (state == NULL)
return -ENOMEM;
dmabuf = &state->dmabuf;
goto found_virt;
}
}
card = card->next;
}
/* no more virtual channel avaiable */
if (!state)
return -ENODEV;
found_virt:
/* initialize the virtual channel */
state->virt = i;
state->card = card;
state->magic = I810_STATE_MAGIC;
init_waitqueue_head(&dmabuf->wait);
mutex_init(&state->open_mutex);
file->private_data = state;
dmabuf->trigger = 0;
/* allocate hardware channels */
if(file->f_mode & FMODE_READ) {
if((dmabuf->read_channel = card->alloc_rec_pcm_channel(card)) == NULL) {
kfree (card->states[i]);
card->states[i] = NULL;
return -EBUSY;
}
dmabuf->trigger |= PCM_ENABLE_INPUT;
i810_set_adc_rate(state, 8000);
}
if(file->f_mode & FMODE_WRITE) {
if((dmabuf->write_channel = card->alloc_pcm_channel(card)) == NULL) {
/* make sure we free the record channel allocated above */
if(file->f_mode & FMODE_READ)
card->free_pcm_channel(card,dmabuf->read_channel->num);
kfree (card->states[i]);
card->states[i] = NULL;
return -EBUSY;
}
/* Initialize to 8kHz? What if we don't support 8kHz? */
/* Let's change this to check for S/PDIF stuff */
dmabuf->trigger |= PCM_ENABLE_OUTPUT;
if ( spdif_locked ) {
i810_set_dac_rate(state, spdif_locked);
i810_set_spdif_output(state, AC97_EA_SPSA_3_4, spdif_locked);
} else {
i810_set_dac_rate(state, 8000);
/* Put the ACLink in 2 channel mode by default */
i = I810_IOREADL(card, GLOB_CNT);
I810_IOWRITEL(i & 0xffcfffff, card, GLOB_CNT);
}
}
/* set default sample format. According to OSS Programmer's Guide /dev/dsp
should be default to unsigned 8-bits, mono, with sample rate 8kHz and
/dev/dspW will accept 16-bits sample, but we don't support those so we
set it immediately to stereo and 16bit, which is all we do support */
dmabuf->fmt |= I810_FMT_16BIT | I810_FMT_STEREO;
dmabuf->ossfragsize = 0;
dmabuf->ossmaxfrags = 0;
dmabuf->subdivision = 0;
state->open_mode |= file->f_mode & (FMODE_READ | FMODE_WRITE);
return nonseekable_open(inode, file);
}
static int i810_release(struct inode *inode, struct file *file)
{
struct i810_state *state = (struct i810_state *)file->private_data;
struct i810_card *card = state->card;
struct dmabuf *dmabuf = &state->dmabuf;
unsigned long flags;
lock_kernel();
/* stop DMA state machine and free DMA buffers/channels */
if(dmabuf->trigger & PCM_ENABLE_OUTPUT) {
drain_dac(state, 0);
}
if(dmabuf->trigger & PCM_ENABLE_INPUT) {
stop_adc(state);
}
spin_lock_irqsave(&card->lock, flags);
dealloc_dmabuf(state);
if (file->f_mode & FMODE_WRITE) {
state->card->free_pcm_channel(state->card, dmabuf->write_channel->num);
}
if (file->f_mode & FMODE_READ) {
state->card->free_pcm_channel(state->card, dmabuf->read_channel->num);
}
state->card->states[state->virt] = NULL;
kfree(state);
spin_unlock_irqrestore(&card->lock, flags);
unlock_kernel();
return 0;
}
static /*const*/ struct file_operations i810_audio_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.read = i810_read,
.write = i810_write,
.poll = i810_poll,
.ioctl = i810_ioctl,
.mmap = i810_mmap,
.open = i810_open,
.release = i810_release,
};
/* Write AC97 codec registers */
static u16 i810_ac97_get_mmio(struct ac97_codec *dev, u8 reg)
{
struct i810_card *card = dev->private_data;
int count = 100;
u16 reg_set = IO_REG_OFF(dev) | (reg&0x7f);
while(count-- && (readb(card->iobase_mmio + CAS) & 1))
udelay(1);
#ifdef DEBUG_MMIO
{
u16 ans = readw(card->ac97base_mmio + reg_set);
printk(KERN_DEBUG "i810_audio: ac97_get_mmio(%d) -> 0x%04X\n", ((int) reg_set) & 0xffff, (u32) ans);
return ans;
}
#else
return readw(card->ac97base_mmio + reg_set);
#endif
}
static u16 i810_ac97_get_io(struct ac97_codec *dev, u8 reg)
{
struct i810_card *card = dev->private_data;
int count = 100;
u16 reg_set = IO_REG_OFF(dev) | (reg&0x7f);
while(count-- && (I810_IOREADB(card, CAS) & 1))
udelay(1);
return inw(card->ac97base + reg_set);
}
static void i810_ac97_set_mmio(struct ac97_codec *dev, u8 reg, u16 data)
{
struct i810_card *card = dev->private_data;
int count = 100;
u16 reg_set = IO_REG_OFF(dev) | (reg&0x7f);
while(count-- && (readb(card->iobase_mmio + CAS) & 1))
udelay(1);
writew(data, card->ac97base_mmio + reg_set);
#ifdef DEBUG_MMIO
printk(KERN_DEBUG "i810_audio: ac97_set_mmio(0x%04X, %d)\n", (u32) data, ((int) reg_set) & 0xffff);
#endif
}
static void i810_ac97_set_io(struct ac97_codec *dev, u8 reg, u16 data)
{
struct i810_card *card = dev->private_data;
int count = 100;
u16 reg_set = IO_REG_OFF(dev) | (reg&0x7f);
while(count-- && (I810_IOREADB(card, CAS) & 1))
udelay(1);
outw(data, card->ac97base + reg_set);
}
static u16 i810_ac97_get(struct ac97_codec *dev, u8 reg)
{
struct i810_card *card = dev->private_data;
u16 ret;
spin_lock(&card->ac97_lock);
if (card->use_mmio) {
ret = i810_ac97_get_mmio(dev, reg);
}
else {
ret = i810_ac97_get_io(dev, reg);
}
spin_unlock(&card->ac97_lock);
return ret;
}
static void i810_ac97_set(struct ac97_codec *dev, u8 reg, u16 data)
{
struct i810_card *card = dev->private_data;
spin_lock(&card->ac97_lock);
if (card->use_mmio) {
i810_ac97_set_mmio(dev, reg, data);
}
else {
i810_ac97_set_io(dev, reg, data);
}
spin_unlock(&card->ac97_lock);
}
/* OSS /dev/mixer file operation methods */
static int i810_open_mixdev(struct inode *inode, struct file *file)
{
int i;
int minor = iminor(inode);
struct i810_card *card = devs;
for (card = devs; card != NULL; card = card->next) {
/*
* If we are initializing and then fail, card could go
* away unuexpectedly while we are in the for() loop.
* So, check for card on each iteration before we check
* for card->initializing to avoid a possible oops.
* This usually only matters for times when the driver is
* autoloaded by kmod.
*/
for (i = 0; i < 50 && card && card->initializing; i++) {
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(HZ/20);
}
for (i = 0; i < NR_AC97 && card && !card->initializing; i++)
if (card->ac97_codec[i] != NULL &&
card->ac97_codec[i]->dev_mixer == minor) {
file->private_data = card->ac97_codec[i];
return nonseekable_open(inode, file);
}
}
return -ENODEV;
}
static int i810_ioctl_mixdev(struct inode *inode, struct file *file, unsigned int cmd,
unsigned long arg)
{
struct ac97_codec *codec = (struct ac97_codec *)file->private_data;
return codec->mixer_ioctl(codec, cmd, arg);
}
static /*const*/ struct file_operations i810_mixer_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.ioctl = i810_ioctl_mixdev,
.open = i810_open_mixdev,
};
/* AC97 codec initialisation. These small functions exist so we don't
duplicate code between module init and apm resume */
static inline int i810_ac97_exists(struct i810_card *card, int ac97_number)
{
u32 reg = I810_IOREADL(card, GLOB_STA);
switch (ac97_number) {
case 0:
return reg & (1<<8);
case 1:
return reg & (1<<9);
case 2:
return reg & (1<<28);
}
return 0;
}
static inline int i810_ac97_enable_variable_rate(struct ac97_codec *codec)
{
i810_ac97_set(codec, AC97_EXTENDED_STATUS, 9);
i810_ac97_set(codec,AC97_EXTENDED_STATUS,
i810_ac97_get(codec, AC97_EXTENDED_STATUS)|0xE800);
return (i810_ac97_get(codec, AC97_EXTENDED_STATUS)&1);
}
static int i810_ac97_probe_and_powerup(struct i810_card *card,struct ac97_codec *codec)
{
/* Returns 0 on failure */
int i;
if (ac97_probe_codec(codec) == 0) return 0;
/* power it all up */
i810_ac97_set(codec, AC97_POWER_CONTROL,
i810_ac97_get(codec, AC97_POWER_CONTROL) & ~0x7f00);
/* wait for analog ready */
for (i=100; i && ((i810_ac97_get(codec, AC97_POWER_CONTROL) & 0xf) != 0xf); i--)
{
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(HZ/20);
}
return i;
}
static int is_new_ich(u16 pci_id)
{
switch (pci_id) {
case PCI_DEVICE_ID_INTEL_82801DB_5:
case PCI_DEVICE_ID_INTEL_82801EB_5:
case PCI_DEVICE_ID_INTEL_ESB_5:
case PCI_DEVICE_ID_INTEL_ICH6_18:
return 1;
default:
break;
}
return 0;
}
static inline int ich_use_mmio(struct i810_card *card)
{
return is_new_ich(card->pci_id) && card->use_mmio;
}
/**
* i810_ac97_power_up_bus - bring up AC97 link
* @card : ICH audio device to power up
*
* Bring up the ACLink AC97 codec bus
*/
static int i810_ac97_power_up_bus(struct i810_card *card)
{
u32 reg = I810_IOREADL(card, GLOB_CNT);
int i;
int primary_codec_id = 0;
if((reg&2)==0) /* Cold required */
reg|=2;
else
reg|=4; /* Warm */
reg&=~8; /* ACLink on */
/* At this point we deassert AC_RESET # */
I810_IOWRITEL(reg , card, GLOB_CNT);
/* We must now allow time for the Codec initialisation.
600mS is the specified time */
for(i=0;i<10;i++)
{
if((I810_IOREADL(card, GLOB_CNT)&4)==0)
break;
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(HZ/20);
}
if(i==10)
{
printk(KERN_ERR "i810_audio: AC'97 reset failed.\n");
return 0;
}
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(HZ/2);
/*
* See if the primary codec comes ready. This must happen
* before we start doing DMA stuff
*/
/* see i810_ac97_init for the next 10 lines (jsaw) */
if (card->use_mmio)
readw(card->ac97base_mmio);
else
inw(card->ac97base);
if (ich_use_mmio(card)) {
primary_codec_id = (int) readl(card->iobase_mmio + SDM) & 0x3;
printk(KERN_INFO "i810_audio: Primary codec has ID %d\n",
primary_codec_id);
}
if(! i810_ac97_exists(card, primary_codec_id))
{
printk(KERN_INFO "i810_audio: Codec not ready.. wait.. ");
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(HZ); /* actually 600mS by the spec */
if(i810_ac97_exists(card, primary_codec_id))
printk("OK\n");
else
printk("no response.\n");
}
if (card->use_mmio)
readw(card->ac97base_mmio);
else
inw(card->ac97base);
return 1;
}
static int __devinit i810_ac97_init(struct i810_card *card)
{
int num_ac97 = 0;
int ac97_id;
int total_channels = 0;
int nr_ac97_max = card_cap[card->pci_id_internal].nr_ac97;
struct ac97_codec *codec;
u16 eid;
u32 reg;
if(!i810_ac97_power_up_bus(card)) return 0;
/* Number of channels supported */
/* What about the codec? Just because the ICH supports */
/* multiple channels doesn't mean the codec does. */
/* we'll have to modify this in the codec section below */
/* to reflect what the codec has. */
/* ICH and ICH0 only support 2 channels so don't bother */
/* to check.... */
card->channels = 2;
reg = I810_IOREADL(card, GLOB_STA);
if ( reg & 0x0200000 )
card->channels = 6;
else if ( reg & 0x0100000 )
card->channels = 4;
printk(KERN_INFO "i810_audio: Audio Controller supports %d channels.\n", card->channels);
printk(KERN_INFO "i810_audio: Defaulting to base 2 channel mode.\n");
reg = I810_IOREADL(card, GLOB_CNT);
I810_IOWRITEL(reg & 0xffcfffff, card, GLOB_CNT);
for (num_ac97 = 0; num_ac97 < NR_AC97; num_ac97++)
card->ac97_codec[num_ac97] = NULL;
/*@FIXME I don't know, if I'm playing to safe here... (jsaw) */
if ((nr_ac97_max > 2) && !card->use_mmio) nr_ac97_max = 2;
for (num_ac97 = 0; num_ac97 < nr_ac97_max; num_ac97++) {
/* codec reset */
printk(KERN_INFO "i810_audio: Resetting connection %d\n", num_ac97);
if (card->use_mmio)
readw(card->ac97base_mmio + 0x80*num_ac97);
else
inw(card->ac97base + 0x80*num_ac97);
/* If we have the SDATA_IN Map Register, as on ICH4, we
do not loop thru all possible codec IDs but thru all
possible IO channels. Bit 0:1 of SDM then holds the
last codec ID spoken to.
*/
if (ich_use_mmio(card)) {
ac97_id = (int) readl(card->iobase_mmio + SDM) & 0x3;
printk(KERN_INFO "i810_audio: Connection %d with codec id %d\n",
num_ac97, ac97_id);
}
else {
ac97_id = num_ac97;
}
/* The ICH programmer's reference says you should */
/* check the ready status before probing. So we chk */
/* What do we do if it's not ready? Wait and try */
/* again, or abort? */
if (!i810_ac97_exists(card, ac97_id)) {
if(num_ac97 == 0)
printk(KERN_ERR "i810_audio: Primary codec not ready.\n");
}
if ((codec = ac97_alloc_codec()) == NULL)
return -ENOMEM;
/* initialize some basic codec information, other fields will be filled
in ac97_probe_codec */
codec->private_data = card;
codec->id = ac97_id;
card->ac97_id_map[ac97_id] = num_ac97 * 0x80;
if (card->use_mmio) {
codec->codec_read = i810_ac97_get_mmio;
codec->codec_write = i810_ac97_set_mmio;
}
else {
codec->codec_read = i810_ac97_get_io;
codec->codec_write = i810_ac97_set_io;
}
if(!i810_ac97_probe_and_powerup(card,codec)) {
printk(KERN_ERR "i810_audio: timed out waiting for codec %d analog ready.\n", ac97_id);
ac97_release_codec(codec);
break; /* it didn't work */
}
/* Store state information about S/PDIF transmitter */
card->ac97_status = 0;
/* Don't attempt to get eid until powerup is complete */
eid = i810_ac97_get(codec, AC97_EXTENDED_ID);
if(eid==0xFFFF)
{
printk(KERN_WARNING "i810_audio: no codec attached ?\n");
ac97_release_codec(codec);
break;
}
/* Check for an AC97 1.0 soft modem (ID1) */
if(codec->modem)
{
printk(KERN_WARNING "i810_audio: codec %d is a softmodem - skipping.\n", ac97_id);
ac97_release_codec(codec);
continue;
}
card->ac97_features = eid;
/* Now check the codec for useful features to make up for
the dumbness of the 810 hardware engine */
if(!(eid&0x0001))
printk(KERN_WARNING "i810_audio: only 48Khz playback available.\n");
else
{
if(!i810_ac97_enable_variable_rate(codec)) {
printk(KERN_WARNING "i810_audio: Codec refused to allow VRA, using 48Khz only.\n");
card->ac97_features&=~1;
}
}
/* Turn on the amplifier */
codec->codec_write(codec, AC97_POWER_CONTROL,
codec->codec_read(codec, AC97_POWER_CONTROL) & ~0x8000);
/* Determine how many channels the codec(s) support */
/* - The primary codec always supports 2 */
/* - If the codec supports AMAP, surround DACs will */
/* automaticlly get assigned to slots. */
/* * Check for surround DACs and increment if */
/* found. */
/* - Else check if the codec is revision 2.2 */
/* * If surround DACs exist, assign them to slots */
/* and increment channel count. */
/* All of this only applies to ICH2 and above. ICH */
/* and ICH0 only support 2 channels. ICH2 will only */
/* support multiple codecs in a "split audio" config. */
/* as described above. */
/* TODO: Remove all the debugging messages! */
if((eid & 0xc000) == 0) /* primary codec */
total_channels += 2;
if(eid & 0x200) { /* GOOD, AMAP support */
if (eid & 0x0080) /* L/R Surround channels */
total_channels += 2;
if (eid & 0x0140) /* LFE and Center channels */
total_channels += 2;
printk("i810_audio: AC'97 codec %d supports AMAP, total channels = %d\n", ac97_id, total_channels);
} else if (eid & 0x0400) { /* this only works on 2.2 compliant codecs */
eid &= 0xffcf;
if((eid & 0xc000) != 0) {
switch ( total_channels ) {
case 2:
/* Set dsa1, dsa0 to 01 */
eid |= 0x0010;
break;
case 4:
/* Set dsa1, dsa0 to 10 */
eid |= 0x0020;
break;
case 6:
/* Set dsa1, dsa0 to 11 */
eid |= 0x0030;
break;
}
total_channels += 2;
}
i810_ac97_set(codec, AC97_EXTENDED_ID, eid);
eid = i810_ac97_get(codec, AC97_EXTENDED_ID);
printk("i810_audio: AC'97 codec %d, new EID value = 0x%04x\n", ac97_id, eid);
if (eid & 0x0080) /* L/R Surround channels */
total_channels += 2;
if (eid & 0x0140) /* LFE and Center channels */
total_channels += 2;
printk("i810_audio: AC'97 codec %d, DAC map configured, total channels = %d\n", ac97_id, total_channels);
} else {
printk("i810_audio: AC'97 codec %d Unable to map surround DAC's (or DAC's not present), total channels = %d\n", ac97_id, total_channels);
}
if ((codec->dev_mixer = register_sound_mixer(&i810_mixer_fops, -1)) < 0) {
printk(KERN_ERR "i810_audio: couldn't register mixer!\n");
ac97_release_codec(codec);
break;
}
card->ac97_codec[num_ac97] = codec;
}
/* tune up the primary codec */
ac97_tune_hardware(card->pci_dev, ac97_quirks, ac97_quirk);
/* pick the minimum of channels supported by ICHx or codec(s) */
card->channels = (card->channels > total_channels)?total_channels:card->channels;
return num_ac97;
}
static void __devinit i810_configure_clocking (void)
{
struct i810_card *card;
struct i810_state *state;
struct dmabuf *dmabuf;
unsigned int i, offset, new_offset;
unsigned long flags;
card = devs;
/* We could try to set the clocking for multiple cards, but can you even have
* more than one i810 in a machine? Besides, clocking is global, so unless
* someone actually thinks more than one i810 in a machine is possible and
* decides to rewrite that little bit, setting the rate for more than one card
* is a waste of time.
*/
if(card != NULL) {
state = card->states[0] = (struct i810_state *)
kzalloc(sizeof(struct i810_state), GFP_KERNEL);
if (state == NULL)
return;
dmabuf = &state->dmabuf;
dmabuf->write_channel = card->alloc_pcm_channel(card);
state->virt = 0;
state->card = card;
state->magic = I810_STATE_MAGIC;
init_waitqueue_head(&dmabuf->wait);
mutex_init(&state->open_mutex);
dmabuf->fmt = I810_FMT_STEREO | I810_FMT_16BIT;
dmabuf->trigger = PCM_ENABLE_OUTPUT;
i810_set_spdif_output(state, -1, 0);
i810_set_dac_channels(state, 2);
i810_set_dac_rate(state, 48000);
if(prog_dmabuf(state, 0) != 0) {
goto config_out_nodmabuf;
}
if(dmabuf->dmasize < 16384) {
goto config_out;
}
dmabuf->count = dmabuf->dmasize;
CIV_TO_LVI(card, dmabuf->write_channel->port, -1);
local_irq_save(flags);
start_dac(state);
offset = i810_get_dma_addr(state, 0);
mdelay(50);
new_offset = i810_get_dma_addr(state, 0);
stop_dac(state);
local_irq_restore(flags);
i = new_offset - offset;
#ifdef DEBUG_INTERRUPTS
printk("i810_audio: %d bytes in 50 milliseconds\n", i);
#endif
if(i == 0)
goto config_out;
i = i / 4 * 20;
if (i > 48500 || i < 47500) {
clocking = clocking * clocking / i;
printk("i810_audio: setting clocking to %d\n", clocking);
}
config_out:
dealloc_dmabuf(state);
config_out_nodmabuf:
state->card->free_pcm_channel(state->card,state->dmabuf.write_channel->num);
kfree(state);
card->states[0] = NULL;
}
}
/* install the driver, we do not allocate hardware channel nor DMA buffer now, they are defered
until "ACCESS" time (in prog_dmabuf called by open/read/write/ioctl/mmap) */
static int __devinit i810_probe(struct pci_dev *pci_dev, const struct pci_device_id *pci_id)
{
struct i810_card *card;
if (pci_enable_device(pci_dev))
return -EIO;
if (pci_set_dma_mask(pci_dev, I810_DMA_MASK)) {
printk(KERN_ERR "i810_audio: architecture does not support"
" 32bit PCI busmaster DMA\n");
return -ENODEV;
}
if ((card = kzalloc(sizeof(struct i810_card), GFP_KERNEL)) == NULL) {
printk(KERN_ERR "i810_audio: out of memory\n");
return -ENOMEM;
}
card->initializing = 1;
card->pci_dev = pci_dev;
card->pci_id = pci_id->device;
card->ac97base = pci_resource_start (pci_dev, 0);
card->iobase = pci_resource_start (pci_dev, 1);
if (!(card->ac97base) || !(card->iobase)) {
card->ac97base = 0;
card->iobase = 0;
}
/* if chipset could have mmio capability, check it */
if (card_cap[pci_id->driver_data].flags & CAP_MMIO) {
card->ac97base_mmio_phys = pci_resource_start (pci_dev, 2);
card->iobase_mmio_phys = pci_resource_start (pci_dev, 3);
if ((card->ac97base_mmio_phys) && (card->iobase_mmio_phys)) {
card->use_mmio = 1;
}
else {
card->ac97base_mmio_phys = 0;
card->iobase_mmio_phys = 0;
}
}
if (!(card->use_mmio) && (!(card->iobase) || !(card->ac97base))) {
printk(KERN_ERR "i810_audio: No I/O resources available.\n");
goto out_mem;
}
card->irq = pci_dev->irq;
card->next = devs;
card->magic = I810_CARD_MAGIC;
#ifdef CONFIG_PM
card->pm_suspended=0;
#endif
spin_lock_init(&card->lock);
spin_lock_init(&card->ac97_lock);
devs = card;
pci_set_master(pci_dev);
printk(KERN_INFO "i810: %s found at IO 0x%04lx and 0x%04lx, "
"MEM 0x%04lx and 0x%04lx, IRQ %d\n",
card_names[pci_id->driver_data],
card->iobase, card->ac97base,
card->ac97base_mmio_phys, card->iobase_mmio_phys,
card->irq);
card->alloc_pcm_channel = i810_alloc_pcm_channel;
card->alloc_rec_pcm_channel = i810_alloc_rec_pcm_channel;
card->alloc_rec_mic_channel = i810_alloc_rec_mic_channel;
card->free_pcm_channel = i810_free_pcm_channel;
if ((card->channel = pci_alloc_consistent(pci_dev,
sizeof(struct i810_channel)*NR_HW_CH, &card->chandma)) == NULL) {
printk(KERN_ERR "i810: cannot allocate channel DMA memory\n");
goto out_mem;
}
{ /* We may dispose of this altogether some time soon, so... */
struct i810_channel *cp = card->channel;
cp[0].offset = 0;
cp[0].port = 0x00;
cp[0].num = 0;
cp[1].offset = 0;
cp[1].port = 0x10;
cp[1].num = 1;
cp[2].offset = 0;
cp[2].port = 0x20;
cp[2].num = 2;
}
/* claim our iospace and irq */
if (!request_region(card->iobase, 64, card_names[pci_id->driver_data])) {
printk(KERN_ERR "i810_audio: unable to allocate region %lx\n", card->iobase);
goto out_region1;
}
if (!request_region(card->ac97base, 256, card_names[pci_id->driver_data])) {
printk(KERN_ERR "i810_audio: unable to allocate region %lx\n", card->ac97base);
goto out_region2;
}
if (card->use_mmio) {
if (request_mem_region(card->ac97base_mmio_phys, 512, "ich_audio MMBAR")) {
if ((card->ac97base_mmio = ioremap(card->ac97base_mmio_phys, 512))) { /*@FIXME can ioremap fail? don't know (jsaw) */
if (request_mem_region(card->iobase_mmio_phys, 256, "ich_audio MBBAR")) {
if ((card->iobase_mmio = ioremap(card->iobase_mmio_phys, 256))) {
printk(KERN_INFO "i810: %s mmio at 0x%04lx and 0x%04lx\n",
card_names[pci_id->driver_data],
(unsigned long) card->ac97base_mmio,
(unsigned long) card->iobase_mmio);
}
else {
iounmap(card->ac97base_mmio);
release_mem_region(card->ac97base_mmio_phys, 512);
release_mem_region(card->iobase_mmio_phys, 512);
card->use_mmio = 0;
}
}
else {
iounmap(card->ac97base_mmio);
release_mem_region(card->ac97base_mmio_phys, 512);
card->use_mmio = 0;
}
}
}
else {
card->use_mmio = 0;
}
}
/* initialize AC97 codec and register /dev/mixer */
if (i810_ac97_init(card) <= 0)
goto out_iospace;
pci_set_drvdata(pci_dev, card);
if(clocking == 0) {
clocking = 48000;
i810_configure_clocking();
}
/* register /dev/dsp */
if ((card->dev_audio = register_sound_dsp(&i810_audio_fops, -1)) < 0) {
int i;
printk(KERN_ERR "i810_audio: couldn't register DSP device!\n");
for (i = 0; i < NR_AC97; i++)
if (card->ac97_codec[i] != NULL) {
unregister_sound_mixer(card->ac97_codec[i]->dev_mixer);
ac97_release_codec(card->ac97_codec[i]);
}
goto out_iospace;
}
if (request_irq(card->irq, &i810_interrupt, IRQF_SHARED,
card_names[pci_id->driver_data], card)) {
printk(KERN_ERR "i810_audio: unable to allocate irq %d\n", card->irq);
goto out_iospace;
}
card->initializing = 0;
return 0;
out_iospace:
if (card->use_mmio) {
iounmap(card->ac97base_mmio);
iounmap(card->iobase_mmio);
release_mem_region(card->ac97base_mmio_phys, 512);
release_mem_region(card->iobase_mmio_phys, 256);
}
release_region(card->ac97base, 256);
out_region2:
release_region(card->iobase, 64);
out_region1:
pci_free_consistent(pci_dev, sizeof(struct i810_channel)*NR_HW_CH,
card->channel, card->chandma);
out_mem:
kfree(card);
return -ENODEV;
}
static void __devexit i810_remove(struct pci_dev *pci_dev)
{
int i;
struct i810_card *card = pci_get_drvdata(pci_dev);
/* free hardware resources */
free_irq(card->irq, devs);
release_region(card->iobase, 64);
release_region(card->ac97base, 256);
pci_free_consistent(pci_dev, sizeof(struct i810_channel)*NR_HW_CH,
card->channel, card->chandma);
if (card->use_mmio) {
iounmap(card->ac97base_mmio);
iounmap(card->iobase_mmio);
release_mem_region(card->ac97base_mmio_phys, 512);
release_mem_region(card->iobase_mmio_phys, 256);
}
/* unregister audio devices */
for (i = 0; i < NR_AC97; i++)
if (card->ac97_codec[i] != NULL) {
unregister_sound_mixer(card->ac97_codec[i]->dev_mixer);
ac97_release_codec(card->ac97_codec[i]);
card->ac97_codec[i] = NULL;
}
unregister_sound_dsp(card->dev_audio);
kfree(card);
}
#ifdef CONFIG_PM
static int i810_pm_suspend(struct pci_dev *dev, pm_message_t pm_state)
{
struct i810_card *card = pci_get_drvdata(dev);
struct i810_state *state;
unsigned long flags;
struct dmabuf *dmabuf;
int i,num_ac97;
#ifdef DEBUG
printk("i810_audio: i810_pm_suspend called\n");
#endif
if(!card) return 0;
spin_lock_irqsave(&card->lock, flags);
card->pm_suspended=1;
for(i=0;i<NR_HW_CH;i++) {
state = card->states[i];
if(!state) continue;
/* this happens only if there are open files */
dmabuf = &state->dmabuf;
if(dmabuf->enable & DAC_RUNNING ||
(dmabuf->count && (dmabuf->trigger & PCM_ENABLE_OUTPUT))) {
state->pm_saved_dac_rate=dmabuf->rate;
stop_dac(state);
} else {
state->pm_saved_dac_rate=0;
}
if(dmabuf->enable & ADC_RUNNING) {
state->pm_saved_adc_rate=dmabuf->rate;
stop_adc(state);
} else {
state->pm_saved_adc_rate=0;
}
dmabuf->ready = 0;
dmabuf->swptr = dmabuf->hwptr = 0;
dmabuf->count = dmabuf->total_bytes = 0;
}
spin_unlock_irqrestore(&card->lock, flags);
/* save mixer settings */
for (num_ac97 = 0; num_ac97 < NR_AC97; num_ac97++) {
struct ac97_codec *codec = card->ac97_codec[num_ac97];
if(!codec) continue;
for(i=0;i< SOUND_MIXER_NRDEVICES ;i++) {
if((supported_mixer(codec,i)) &&
(codec->read_mixer)) {
card->pm_saved_mixer_settings[i][num_ac97]=
codec->read_mixer(codec,i);
}
}
}
pci_save_state(dev); /* XXX do we need this? */
pci_disable_device(dev); /* disable busmastering */
pci_set_power_state(dev,3); /* Zzz. */
return 0;
}
static int i810_pm_resume(struct pci_dev *dev)
{
int num_ac97,i=0;
struct i810_card *card=pci_get_drvdata(dev);
pci_enable_device(dev);
pci_restore_state (dev);
/* observation of a toshiba portege 3440ct suggests that the
hardware has to be more or less completely reinitialized from
scratch after an apm suspend. Works For Me. -dan */
i810_ac97_power_up_bus(card);
for (num_ac97 = 0; num_ac97 < NR_AC97; num_ac97++) {
struct ac97_codec *codec = card->ac97_codec[num_ac97];
/* check they haven't stolen the hardware while we were
away */
if(!codec || !i810_ac97_exists(card,num_ac97)) {
if(num_ac97) continue;
else BUG();
}
if(!i810_ac97_probe_and_powerup(card,codec)) BUG();
if((card->ac97_features&0x0001)) {
/* at probe time we found we could do variable
rates, but APM suspend has made it forget
its magical powers */
if(!i810_ac97_enable_variable_rate(codec)) BUG();
}
/* we lost our mixer settings, so restore them */
for(i=0;i< SOUND_MIXER_NRDEVICES ;i++) {
if(supported_mixer(codec,i)){
int val=card->
pm_saved_mixer_settings[i][num_ac97];
codec->mixer_state[i]=val;
codec->write_mixer(codec,i,
(val & 0xff) ,
((val >> 8) & 0xff) );
}
}
}
/* we need to restore the sample rate from whatever it was */
for(i=0;i<NR_HW_CH;i++) {
struct i810_state * state=card->states[i];
if(state) {
if(state->pm_saved_adc_rate)
i810_set_adc_rate(state,state->pm_saved_adc_rate);
if(state->pm_saved_dac_rate)
i810_set_dac_rate(state,state->pm_saved_dac_rate);
}
}
card->pm_suspended = 0;
/* any processes that were reading/writing during the suspend
probably ended up here */
for(i=0;i<NR_HW_CH;i++) {
struct i810_state *state = card->states[i];
if(state) wake_up(&state->dmabuf.wait);
}
return 0;
}
#endif /* CONFIG_PM */
MODULE_AUTHOR("The Linux kernel team");
MODULE_DESCRIPTION("Intel 810 audio support");
MODULE_LICENSE("GPL");
module_param(ftsodell, int, 0444);
module_param(clocking, uint, 0444);
module_param(strict_clocking, int, 0444);
module_param(spdif_locked, int, 0444);
#define I810_MODULE_NAME "i810_audio"
static struct pci_driver i810_pci_driver = {
.name = I810_MODULE_NAME,
.id_table = i810_pci_tbl,
.probe = i810_probe,
.remove = __devexit_p(i810_remove),
#ifdef CONFIG_PM
.suspend = i810_pm_suspend,
.resume = i810_pm_resume,
#endif /* CONFIG_PM */
};
static int __init i810_init_module (void)
{
int retval;
printk(KERN_INFO "Intel 810 + AC97 Audio, version "
DRIVER_VERSION ", " __TIME__ " " __DATE__ "\n");
retval = pci_register_driver(&i810_pci_driver);
if (retval)
return retval;
if(ftsodell != 0) {
printk("i810_audio: ftsodell is now a deprecated option.\n");
}
if(spdif_locked > 0 ) {
if(spdif_locked == 32000 || spdif_locked == 44100 || spdif_locked == 48000) {
printk("i810_audio: Enabling S/PDIF at sample rate %dHz.\n", spdif_locked);
} else {
printk("i810_audio: S/PDIF can only be locked to 32000, 44100, or 48000Hz.\n");
spdif_locked = 0;
}
}
return 0;
}
static void __exit i810_cleanup_module (void)
{
pci_unregister_driver(&i810_pci_driver);
}
module_init(i810_init_module);
module_exit(i810_cleanup_module);
/*
Local Variables:
c-basic-offset: 8
End:
*/
/*
* Support for VIA 82Cxxx Audio Codecs
* Copyright 1999,2000 Jeff Garzik
*
* Updated to support the VIA 8233/8235 audio subsystem
* Alan Cox <alan@redhat.com> (C) Copyright 2002, 2003 Red Hat Inc
*
* Distributed under the GNU GENERAL PUBLIC LICENSE (GPL) Version 2.
* See the "COPYING" file distributed with this software for more info.
* NO WARRANTY
*
* For a list of known bugs (errata) and documentation,
* see via-audio.pdf in Documentation/DocBook.
* If this documentation does not exist, run "make pdfdocs".
*/
#define VIA_VERSION "1.9.1-ac4-2.5"
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/pci.h>
#include <linux/poison.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/proc_fs.h>
#include <linux/spinlock.h>
#include <linux/sound.h>
#include <linux/poll.h>
#include <linux/soundcard.h>
#include <linux/ac97_codec.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <linux/mutex.h>
#include "sound_config.h"
#include "dev_table.h"
#include "mpu401.h"
#undef VIA_DEBUG /* define to enable debugging output and checks */
#ifdef VIA_DEBUG
/* note: prints function name for you */
#define DPRINTK(fmt, args...) printk(KERN_DEBUG "%s: " fmt, __FUNCTION__ , ## args)
#else
#define DPRINTK(fmt, args...)
#endif
#undef VIA_NDEBUG /* define to disable lightweight runtime checks */
#ifdef VIA_NDEBUG
#define assert(expr)
#else
#define assert(expr) \
if(!(expr)) { \
printk( "Assertion failed! %s,%s,%s,line=%d\n", \
#expr,__FILE__,__FUNCTION__,__LINE__); \
}
#endif
#define VIA_SUPPORT_MMAP 1 /* buggy, for now... */
#define MAX_CARDS 1
#define VIA_CARD_NAME "VIA 82Cxxx Audio driver " VIA_VERSION
#define VIA_MODULE_NAME "via82cxxx"
#define PFX VIA_MODULE_NAME ": "
#define VIA_COUNTER_LIMIT 100000
/* size of DMA buffers */
#define VIA_MAX_BUFFER_DMA_PAGES 32
/* buffering default values in ms */
#define VIA_DEFAULT_FRAG_TIME 20
#define VIA_DEFAULT_BUFFER_TIME 500
/* the hardware has a 256 fragment limit */
#define VIA_MIN_FRAG_NUMBER 2
#define VIA_MAX_FRAG_NUMBER 128
#define VIA_MAX_FRAG_SIZE PAGE_SIZE
#define VIA_MIN_FRAG_SIZE (VIA_MAX_BUFFER_DMA_PAGES * PAGE_SIZE / VIA_MAX_FRAG_NUMBER)
/* 82C686 function 5 (audio codec) PCI configuration registers */
#define VIA_ACLINK_STATUS 0x40
#define VIA_ACLINK_CTRL 0x41
#define VIA_FUNC_ENABLE 0x42
#define VIA_PNP_CONTROL 0x43
#define VIA_FM_NMI_CTRL 0x48
/*
* controller base 0 (scatter-gather) registers
*
* NOTE: Via datasheet lists first channel as "read"
* channel and second channel as "write" channel.
* I changed the naming of the constants to be more
* clear than I felt the datasheet to be.
*/
#define VIA_BASE0_PCM_OUT_CHAN 0x00 /* output PCM to user */
#define VIA_BASE0_PCM_OUT_CHAN_STATUS 0x00
#define VIA_BASE0_PCM_OUT_CHAN_CTRL 0x01
#define VIA_BASE0_PCM_OUT_CHAN_TYPE 0x02
#define VIA_BASE0_PCM_IN_CHAN 0x10 /* input PCM from user */
#define VIA_BASE0_PCM_IN_CHAN_STATUS 0x10
#define VIA_BASE0_PCM_IN_CHAN_CTRL 0x11
#define VIA_BASE0_PCM_IN_CHAN_TYPE 0x12
/* offsets from base */
#define VIA_PCM_STATUS 0x00
#define VIA_PCM_CONTROL 0x01
#define VIA_PCM_TYPE 0x02
#define VIA_PCM_LEFTVOL 0x02
#define VIA_PCM_RIGHTVOL 0x03
#define VIA_PCM_TABLE_ADDR 0x04
#define VIA_PCM_STOPRATE 0x08 /* 8233+ */
#define VIA_PCM_BLOCK_COUNT 0x0C
/* XXX unused DMA channel for FM PCM data */
#define VIA_BASE0_FM_OUT_CHAN 0x20
#define VIA_BASE0_FM_OUT_CHAN_STATUS 0x20
#define VIA_BASE0_FM_OUT_CHAN_CTRL 0x21
#define VIA_BASE0_FM_OUT_CHAN_TYPE 0x22
/* Six channel audio output on 8233 */
#define VIA_BASE0_MULTI_OUT_CHAN 0x40
#define VIA_BASE0_MULTI_OUT_CHAN_STATUS 0x40
#define VIA_BASE0_MULTI_OUT_CHAN_CTRL 0x41
#define VIA_BASE0_MULTI_OUT_CHAN_TYPE 0x42
#define VIA_BASE0_AC97_CTRL 0x80
#define VIA_BASE0_SGD_STATUS_SHADOW 0x84
#define VIA_BASE0_GPI_INT_ENABLE 0x8C
#define VIA_INTR_OUT ((1<<0) | (1<<4) | (1<<8))
#define VIA_INTR_IN ((1<<1) | (1<<5) | (1<<9))
#define VIA_INTR_FM ((1<<2) | (1<<6) | (1<<10))
#define VIA_INTR_MASK (VIA_INTR_OUT | VIA_INTR_IN | VIA_INTR_FM)
/* Newer VIA we need to monitor the low 3 bits of each channel. This
mask covers the channels we don't yet use as well
*/
#define VIA_NEW_INTR_MASK 0x77077777UL
/* VIA_BASE0_AUDIO_xxx_CHAN_TYPE bits */
#define VIA_IRQ_ON_FLAG (1<<0) /* int on each flagged scatter block */
#define VIA_IRQ_ON_EOL (1<<1) /* int at end of scatter list */
#define VIA_INT_SEL_PCI_LAST_LINE_READ (0) /* int at PCI read of last line */
#define VIA_INT_SEL_LAST_SAMPLE_SENT (1<<2) /* int at last sample sent */
#define VIA_INT_SEL_ONE_LINE_LEFT (1<<3) /* int at less than one line to send */
#define VIA_PCM_FMT_STEREO (1<<4) /* PCM stereo format (bit clear == mono) */
#define VIA_PCM_FMT_16BIT (1<<5) /* PCM 16-bit format (bit clear == 8-bit) */
#define VIA_PCM_REC_FIFO (1<<6) /* PCM Recording FIFO */
#define VIA_RESTART_SGD_ON_EOL (1<<7) /* restart scatter-gather at EOL */
#define VIA_PCM_FMT_MASK (VIA_PCM_FMT_STEREO|VIA_PCM_FMT_16BIT)
#define VIA_CHAN_TYPE_MASK (VIA_RESTART_SGD_ON_EOL | \
VIA_IRQ_ON_FLAG | \
VIA_IRQ_ON_EOL)
#define VIA_CHAN_TYPE_INT_SELECT (VIA_INT_SEL_LAST_SAMPLE_SENT)
/* PCI configuration register bits and masks */
#define VIA_CR40_AC97_READY 0x01
#define VIA_CR40_AC97_LOW_POWER 0x02
#define VIA_CR40_SECONDARY_READY 0x04
#define VIA_CR41_AC97_ENABLE 0x80 /* enable AC97 codec */
#define VIA_CR41_AC97_RESET 0x40 /* clear bit to reset AC97 */
#define VIA_CR41_AC97_WAKEUP 0x20 /* wake up from power-down mode */
#define VIA_CR41_AC97_SDO 0x10 /* force Serial Data Out (SDO) high */
#define VIA_CR41_VRA 0x08 /* enable variable sample rate */
#define VIA_CR41_PCM_ENABLE 0x04 /* AC Link SGD Read Channel PCM Data Output */
#define VIA_CR41_FM_PCM_ENABLE 0x02 /* AC Link FM Channel PCM Data Out */
#define VIA_CR41_SB_PCM_ENABLE 0x01 /* AC Link SB PCM Data Output */
#define VIA_CR41_BOOT_MASK (VIA_CR41_AC97_ENABLE | \
VIA_CR41_AC97_WAKEUP | \
VIA_CR41_AC97_SDO)
#define VIA_CR41_RUN_MASK (VIA_CR41_AC97_ENABLE | \
VIA_CR41_AC97_RESET | \
VIA_CR41_VRA | \
VIA_CR41_PCM_ENABLE)
#define VIA_CR42_SB_ENABLE 0x01
#define VIA_CR42_MIDI_ENABLE 0x02
#define VIA_CR42_FM_ENABLE 0x04
#define VIA_CR42_GAME_ENABLE 0x08
#define VIA_CR42_MIDI_IRQMASK 0x40
#define VIA_CR42_MIDI_PNP 0x80
#define VIA_CR44_SECOND_CODEC_SUPPORT (1 << 6)
#define VIA_CR44_AC_LINK_ACCESS (1 << 7)
#define VIA_CR48_FM_TRAP_TO_NMI (1 << 2)
/* controller base 0 register bitmasks */
#define VIA_INT_DISABLE_MASK (~(0x01|0x02))
#define VIA_SGD_STOPPED (1 << 2)
#define VIA_SGD_PAUSED (1 << 6)
#define VIA_SGD_ACTIVE (1 << 7)
#define VIA_SGD_TERMINATE (1 << 6)
#define VIA_SGD_FLAG (1 << 0)
#define VIA_SGD_EOL (1 << 1)
#define VIA_SGD_START (1 << 7)
#define VIA_CR80_FIRST_CODEC 0
#define VIA_CR80_SECOND_CODEC (1 << 30)
#define VIA_CR80_FIRST_CODEC_VALID (1 << 25)
#define VIA_CR80_VALID (1 << 25)
#define VIA_CR80_SECOND_CODEC_VALID (1 << 27)
#define VIA_CR80_BUSY (1 << 24)
#define VIA_CR83_BUSY (1)
#define VIA_CR83_FIRST_CODEC_VALID (1 << 1)
#define VIA_CR80_READ (1 << 23)
#define VIA_CR80_WRITE_MODE 0
#define VIA_CR80_REG_IDX(idx) ((((idx) & 0xFF) >> 1) << 16)
/* capabilities we announce */
#ifdef VIA_SUPPORT_MMAP
#define VIA_DSP_CAP (DSP_CAP_REVISION | DSP_CAP_DUPLEX | DSP_CAP_MMAP | \
DSP_CAP_TRIGGER | DSP_CAP_REALTIME)
#else
#define VIA_DSP_CAP (DSP_CAP_REVISION | DSP_CAP_DUPLEX | \
DSP_CAP_TRIGGER | DSP_CAP_REALTIME)
#endif
/* scatter-gather DMA table entry, exactly as passed to hardware */
struct via_sgd_table {
u32 addr;
u32 count; /* includes additional VIA_xxx bits also */
};
#define VIA_EOL (1 << 31)
#define VIA_FLAG (1 << 30)
#define VIA_STOP (1 << 29)
enum via_channel_states {
sgd_stopped = 0,
sgd_in_progress = 1,
};
struct via_buffer_pgtbl {
dma_addr_t handle;
void *cpuaddr;
};
struct via_channel {
atomic_t n_frags;
atomic_t hw_ptr;
wait_queue_head_t wait;
unsigned int sw_ptr;
unsigned int slop_len;
unsigned int n_irqs;
int bytes;
unsigned is_active : 1;
unsigned is_record : 1;
unsigned is_mapped : 1;
unsigned is_enabled : 1;
unsigned is_multi: 1; /* 8233 6 channel */
u8 pcm_fmt; /* VIA_PCM_FMT_xxx */
u8 channels; /* Channel count */
unsigned rate; /* sample rate */
unsigned int frag_size;
unsigned int frag_number;
unsigned char intmask;
volatile struct via_sgd_table *sgtable;
dma_addr_t sgt_handle;
unsigned int page_number;
struct via_buffer_pgtbl pgtbl[VIA_MAX_BUFFER_DMA_PAGES];
long iobase;
const char *name;
};
/* data stored for each chip */
struct via_info {
struct pci_dev *pdev;
long baseaddr;
struct ac97_codec *ac97;
spinlock_t ac97_lock;
spinlock_t lock;
int card_num; /* unique card number, from 0 */
int dev_dsp; /* /dev/dsp index from register_sound_dsp() */
unsigned rev_h : 1;
unsigned legacy: 1; /* Has legacy ports */
unsigned intmask: 1; /* Needs int bits */
unsigned sixchannel: 1; /* 8233/35 with 6 channel support */
unsigned volume: 1;
unsigned locked_rate : 1;
int mixer_vol; /* 8233/35 volume - not yet implemented */
struct mutex syscall_mutex;
struct mutex open_mutex;
/* The 8233/8235 have 4 DX audio channels, two record and
one six channel out. We bind ch_in to DX 1, ch_out to multichannel
and ch_fm to DX 2. DX 3 and REC0/REC1 are unused at the
moment */
struct via_channel ch_in;
struct via_channel ch_out;
struct via_channel ch_fm;
#ifdef CONFIG_MIDI_VIA82CXXX
void *midi_devc;
struct address_info midi_info;
#endif
};
/* number of cards, used for assigning unique numbers to cards */
static unsigned via_num_cards;
/****************************************************************
*
* prototypes
*
*
*/
static int via_init_one (struct pci_dev *dev, const struct pci_device_id *id);
static void __devexit via_remove_one (struct pci_dev *pdev);
static ssize_t via_dsp_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos);
static ssize_t via_dsp_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos);
static unsigned int via_dsp_poll(struct file *file, struct poll_table_struct *wait);
static int via_dsp_ioctl (struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg);
static int via_dsp_open (struct inode *inode, struct file *file);
static int via_dsp_release(struct inode *inode, struct file *file);
static int via_dsp_mmap(struct file *file, struct vm_area_struct *vma);
static u16 via_ac97_read_reg (struct ac97_codec *codec, u8 reg);
static void via_ac97_write_reg (struct ac97_codec *codec, u8 reg, u16 value);
static u8 via_ac97_wait_idle (struct via_info *card);
static void via_chan_free (struct via_info *card, struct via_channel *chan);
static void via_chan_clear (struct via_info *card, struct via_channel *chan);
static void via_chan_pcm_fmt (struct via_channel *chan, int reset);
static void via_chan_buffer_free (struct via_info *card, struct via_channel *chan);
/****************************************************************
*
* Various data the driver needs
*
*
*/
static struct pci_device_id via_pci_tbl[] = {
{ PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_82C686_5,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{ PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_8233_5,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1},
{ 0, }
};
MODULE_DEVICE_TABLE(pci,via_pci_tbl);
static struct pci_driver via_driver = {
.name = VIA_MODULE_NAME,
.id_table = via_pci_tbl,
.probe = via_init_one,
.remove = __devexit_p(via_remove_one),
};
/****************************************************************
*
* Low-level base 0 register read/write helpers
*
*
*/
/**
* via_chan_stop - Terminate DMA on specified PCM channel
* @iobase: PCI base address for SGD channel registers
*
* Terminate scatter-gather DMA operation for given
* channel (derived from @iobase), if DMA is active.
*
* Note that @iobase is not the PCI base address,
* but the PCI base address plus an offset to
* one of three PCM channels supported by the chip.
*
*/
static inline void via_chan_stop (long iobase)
{
if (inb (iobase + VIA_PCM_STATUS) & VIA_SGD_ACTIVE)
outb (VIA_SGD_TERMINATE, iobase + VIA_PCM_CONTROL);
}
/**
* via_chan_status_clear - Clear status flags on specified DMA channel
* @iobase: PCI base address for SGD channel registers
*
* Clear any pending status flags for the given
* DMA channel (derived from @iobase), if any
* flags are asserted.
*
* Note that @iobase is not the PCI base address,
* but the PCI base address plus an offset to
* one of three PCM channels supported by the chip.
*
*/
static inline void via_chan_status_clear (long iobase)
{
u8 tmp = inb (iobase + VIA_PCM_STATUS);
if (tmp != 0)
outb (tmp, iobase + VIA_PCM_STATUS);
}
/**
* sg_begin - Begin recording or playback on a PCM channel
* @chan: Channel for which DMA operation shall begin
*
* Start scatter-gather DMA for the given channel.
*
*/
static inline void sg_begin (struct via_channel *chan)
{
DPRINTK("Start with intmask %d\n", chan->intmask);
DPRINTK("About to start from %d to %d\n",
inl(chan->iobase + VIA_PCM_BLOCK_COUNT),
inb(chan->iobase + VIA_PCM_STOPRATE + 3));
outb (VIA_SGD_START|chan->intmask, chan->iobase + VIA_PCM_CONTROL);
DPRINTK("Status is now %02X\n", inb(chan->iobase + VIA_PCM_STATUS));
DPRINTK("Control is now %02X\n", inb(chan->iobase + VIA_PCM_CONTROL));
}
static int sg_active (long iobase)
{
u8 tmp = inb (iobase + VIA_PCM_STATUS);
if ((tmp & VIA_SGD_STOPPED) || (tmp & VIA_SGD_PAUSED)) {
printk(KERN_WARNING "via82cxxx warning: SG stopped or paused\n");
return 0;
}
if (tmp & VIA_SGD_ACTIVE)
return 1;
return 0;
}
static int via_sg_offset(struct via_channel *chan)
{
return inl (chan->iobase + VIA_PCM_BLOCK_COUNT) & 0x00FFFFFF;
}
/****************************************************************
*
* Miscellaneous debris
*
*
*/
/**
* via_syscall_down - down the card-specific syscell semaphore
* @card: Private info for specified board
* @nonblock: boolean, non-zero if O_NONBLOCK is set
*
* Encapsulates standard method of acquiring the syscall sem.
*
* Returns negative errno on error, or zero for success.
*/
static inline int via_syscall_down (struct via_info *card, int nonblock)
{
/* Thomas Sailer:
* EAGAIN is supposed to be used if IO is pending,
* not if there is contention on some internal
* synchronization primitive which should be
* held only for a short time anyway
*/
nonblock = 0;
if (nonblock) {
if (!mutex_trylock(&card->syscall_mutex))
return -EAGAIN;
} else {
if (mutex_lock_interruptible(&card->syscall_mutex))
return -ERESTARTSYS;
}
return 0;
}
/**
* via_stop_everything - Stop all audio operations
* @card: Private info for specified board
*
* Stops all DMA operations and interrupts, and clear
* any pending status bits resulting from those operations.
*/
static void via_stop_everything (struct via_info *card)
{
u8 tmp, new_tmp;
DPRINTK ("ENTER\n");
assert (card != NULL);
/*
* terminate any existing operations on audio read/write channels
*/
via_chan_stop (card->baseaddr + VIA_BASE0_PCM_OUT_CHAN);
via_chan_stop (card->baseaddr + VIA_BASE0_PCM_IN_CHAN);
via_chan_stop (card->baseaddr + VIA_BASE0_FM_OUT_CHAN);
if(card->sixchannel)
via_chan_stop (card->baseaddr + VIA_BASE0_MULTI_OUT_CHAN);
/*
* clear any existing stops / flags (sanity check mainly)
*/
via_chan_status_clear (card->baseaddr + VIA_BASE0_PCM_OUT_CHAN);
via_chan_status_clear (card->baseaddr + VIA_BASE0_PCM_IN_CHAN);
via_chan_status_clear (card->baseaddr + VIA_BASE0_FM_OUT_CHAN);
if(card->sixchannel)
via_chan_status_clear (card->baseaddr + VIA_BASE0_MULTI_OUT_CHAN);
/*
* clear any enabled interrupt bits
*/
tmp = inb (card->baseaddr + VIA_BASE0_PCM_OUT_CHAN_TYPE);
new_tmp = tmp & ~(VIA_IRQ_ON_FLAG|VIA_IRQ_ON_EOL|VIA_RESTART_SGD_ON_EOL);
if (tmp != new_tmp)
outb (0, card->baseaddr + VIA_BASE0_PCM_OUT_CHAN_TYPE);
tmp = inb (card->baseaddr + VIA_BASE0_PCM_IN_CHAN_TYPE);
new_tmp = tmp & ~(VIA_IRQ_ON_FLAG|VIA_IRQ_ON_EOL|VIA_RESTART_SGD_ON_EOL);
if (tmp != new_tmp)
outb (0, card->baseaddr + VIA_BASE0_PCM_IN_CHAN_TYPE);
tmp = inb (card->baseaddr + VIA_BASE0_FM_OUT_CHAN_TYPE);
new_tmp = tmp & ~(VIA_IRQ_ON_FLAG|VIA_IRQ_ON_EOL|VIA_RESTART_SGD_ON_EOL);
if (tmp != new_tmp)
outb (0, card->baseaddr + VIA_BASE0_FM_OUT_CHAN_TYPE);
if(card->sixchannel)
{
tmp = inb (card->baseaddr + VIA_BASE0_MULTI_OUT_CHAN_TYPE);
new_tmp = tmp & ~(VIA_IRQ_ON_FLAG|VIA_IRQ_ON_EOL|VIA_RESTART_SGD_ON_EOL);
if (tmp != new_tmp)
outb (0, card->baseaddr + VIA_BASE0_MULTI_OUT_CHAN_TYPE);
}
udelay(10);
/*
* clear any existing flags
*/
via_chan_status_clear (card->baseaddr + VIA_BASE0_PCM_OUT_CHAN);
via_chan_status_clear (card->baseaddr + VIA_BASE0_PCM_IN_CHAN);
via_chan_status_clear (card->baseaddr + VIA_BASE0_FM_OUT_CHAN);
DPRINTK ("EXIT\n");
}
/**
* via_set_rate - Set PCM rate for given channel
* @ac97: Pointer to generic codec info struct
* @chan: Private info for specified channel
* @rate: Desired PCM sample rate, in Khz
*
* Sets the PCM sample rate for a channel.
*
* Values for @rate are clamped to a range of 4000 Khz through 48000 Khz,
* due to hardware constraints.
*/
static int via_set_rate (struct ac97_codec *ac97,
struct via_channel *chan, unsigned rate)
{
struct via_info *card = ac97->private_data;
int rate_reg;
u32 dacp;
u32 mast_vol, phone_vol, mono_vol, pcm_vol;
u32 mute_vol = 0x8000; /* The mute volume? -- Seems to work! */
DPRINTK ("ENTER, rate = %d\n", rate);
if (chan->rate == rate)
goto out;
if (card->locked_rate) {
chan->rate = 48000;
goto out;
}
if (rate > 48000) rate = 48000;
if (rate < 4000) rate = 4000;
rate_reg = chan->is_record ? AC97_PCM_LR_ADC_RATE :
AC97_PCM_FRONT_DAC_RATE;
/* Save current state */
dacp=via_ac97_read_reg(ac97, AC97_POWER_CONTROL);
mast_vol = via_ac97_read_reg(ac97, AC97_MASTER_VOL_STEREO);
mono_vol = via_ac97_read_reg(ac97, AC97_MASTER_VOL_MONO);
phone_vol = via_ac97_read_reg(ac97, AC97_HEADPHONE_VOL);
pcm_vol = via_ac97_read_reg(ac97, AC97_PCMOUT_VOL);
/* Mute - largely reduces popping */
via_ac97_write_reg(ac97, AC97_MASTER_VOL_STEREO, mute_vol);
via_ac97_write_reg(ac97, AC97_MASTER_VOL_MONO, mute_vol);
via_ac97_write_reg(ac97, AC97_HEADPHONE_VOL, mute_vol);
via_ac97_write_reg(ac97, AC97_PCMOUT_VOL, mute_vol);
/* Power down the DAC */
via_ac97_write_reg(ac97, AC97_POWER_CONTROL, dacp|0x0200);
/* Set new rate */
via_ac97_write_reg (ac97, rate_reg, rate);
/* Power DAC back up */
via_ac97_write_reg(ac97, AC97_POWER_CONTROL, dacp);
udelay (200); /* reduces popping */
/* Restore volumes */
via_ac97_write_reg(ac97, AC97_MASTER_VOL_STEREO, mast_vol);
via_ac97_write_reg(ac97, AC97_MASTER_VOL_MONO, mono_vol);
via_ac97_write_reg(ac97, AC97_HEADPHONE_VOL, phone_vol);
via_ac97_write_reg(ac97, AC97_PCMOUT_VOL, pcm_vol);
/* the hardware might return a value different than what we
* passed to it, so read the rate value back from hardware
* to see what we came up with
*/
chan->rate = via_ac97_read_reg (ac97, rate_reg);
if (chan->rate == 0) {
card->locked_rate = 1;
chan->rate = 48000;
printk (KERN_WARNING PFX "Codec rate locked at 48Khz\n");
}
out:
DPRINTK ("EXIT, returning rate %d Hz\n", chan->rate);
return chan->rate;
}
/****************************************************************
*
* Channel-specific operations
*
*
*/
/**
* via_chan_init_defaults - Initialize a struct via_channel
* @card: Private audio chip info
* @chan: Channel to be initialized
*
* Zero @chan, and then set all static defaults for the structure.
*/
static void via_chan_init_defaults (struct via_info *card, struct via_channel *chan)
{
memset (chan, 0, sizeof (*chan));
if(card->intmask)
chan->intmask = 0x23; /* Turn on the IRQ bits */
if (chan == &card->ch_out) {
chan->name = "PCM-OUT";
if(card->sixchannel)
{
chan->iobase = card->baseaddr + VIA_BASE0_MULTI_OUT_CHAN;
chan->is_multi = 1;
DPRINTK("Using multichannel for pcm out\n");
}
else
chan->iobase = card->baseaddr + VIA_BASE0_PCM_OUT_CHAN;
} else if (chan == &card->ch_in) {
chan->name = "PCM-IN";
chan->iobase = card->baseaddr + VIA_BASE0_PCM_IN_CHAN;
chan->is_record = 1;
} else if (chan == &card->ch_fm) {
chan->name = "PCM-OUT-FM";
chan->iobase = card->baseaddr + VIA_BASE0_FM_OUT_CHAN;
} else {
BUG();
}
init_waitqueue_head (&chan->wait);
chan->pcm_fmt = VIA_PCM_FMT_MASK;
chan->is_enabled = 1;
chan->frag_number = 0;
chan->frag_size = 0;
atomic_set(&chan->n_frags, 0);
atomic_set (&chan->hw_ptr, 0);
}
/**
* via_chan_init - Initialize PCM channel
* @card: Private audio chip info
* @chan: Channel to be initialized
*
* Performs some of the preparations necessary to begin
* using a PCM channel.
*
* Currently the preparations consist of
* setting the PCM channel to a known state.
*/
static void via_chan_init (struct via_info *card, struct via_channel *chan)
{
DPRINTK ("ENTER\n");
/* bzero channel structure, and init members to defaults */
via_chan_init_defaults (card, chan);
/* stop any existing channel output */
via_chan_clear (card, chan);
via_chan_status_clear (chan->iobase);
via_chan_pcm_fmt (chan, 1);
DPRINTK ("EXIT\n");
}
/**
* via_chan_buffer_init - Initialize PCM channel buffer
* @card: Private audio chip info
* @chan: Channel to be initialized
*
* Performs some of the preparations necessary to begin
* using a PCM channel.
*
* Currently the preparations include allocating the
* scatter-gather DMA table and buffers,
* and passing the
* address of the DMA table to the hardware.
*
* Note that special care is taken when passing the
* DMA table address to hardware, because it was found
* during driver development that the hardware did not
* always "take" the address.
*/
static int via_chan_buffer_init (struct via_info *card, struct via_channel *chan)
{
int page, offset;
int i;
DPRINTK ("ENTER\n");
chan->intmask = 0;
if(card->intmask)
chan->intmask = 0x23; /* Turn on the IRQ bits */
if (chan->sgtable != NULL) {
DPRINTK ("EXIT\n");
return 0;
}
/* alloc DMA-able memory for scatter-gather table */
chan->sgtable = pci_alloc_consistent (card->pdev,
(sizeof (struct via_sgd_table) * chan->frag_number),
&chan->sgt_handle);
if (!chan->sgtable) {
printk (KERN_ERR PFX "DMA table alloc fail, aborting\n");
DPRINTK ("EXIT\n");
return -ENOMEM;
}
memset ((void*)chan->sgtable, 0,
(sizeof (struct via_sgd_table) * chan->frag_number));
/* alloc DMA-able memory for scatter-gather buffers */
chan->page_number = (chan->frag_number * chan->frag_size) / PAGE_SIZE +
(((chan->frag_number * chan->frag_size) % PAGE_SIZE) ? 1 : 0);
for (i = 0; i < chan->page_number; i++) {
chan->pgtbl[i].cpuaddr = pci_alloc_consistent (card->pdev, PAGE_SIZE,
&chan->pgtbl[i].handle);
if (!chan->pgtbl[i].cpuaddr) {
chan->page_number = i;
goto err_out_nomem;
}
#ifndef VIA_NDEBUG
memset (chan->pgtbl[i].cpuaddr, 0xBC, chan->frag_size);
#endif
#if 1
DPRINTK ("dmabuf_pg #%d (h=%lx, v2p=%lx, a=%p)\n",
i, (long)chan->pgtbl[i].handle,
virt_to_phys(chan->pgtbl[i].cpuaddr),
chan->pgtbl[i].cpuaddr);
#endif
}
for (i = 0; i < chan->frag_number; i++) {
page = i / (PAGE_SIZE / chan->frag_size);
offset = (i % (PAGE_SIZE / chan->frag_size)) * chan->frag_size;
chan->sgtable[i].count = cpu_to_le32 (chan->frag_size | VIA_FLAG);
chan->sgtable[i].addr = cpu_to_le32 (chan->pgtbl[page].handle + offset);
#if 1
DPRINTK ("dmabuf #%d (32(h)=%lx)\n",
i,
(long)chan->sgtable[i].addr);
#endif
}
/* overwrite the last buffer information */
chan->sgtable[chan->frag_number - 1].count = cpu_to_le32 (chan->frag_size | VIA_EOL);
/* set location of DMA-able scatter-gather info table */
DPRINTK ("outl (0x%X, 0x%04lX)\n",
chan->sgt_handle, chan->iobase + VIA_PCM_TABLE_ADDR);
via_ac97_wait_idle (card);
outl (chan->sgt_handle, chan->iobase + VIA_PCM_TABLE_ADDR);
udelay (20);
via_ac97_wait_idle (card);
/* load no rate adaption, stereo 16bit, set up ring slots */
if(card->sixchannel)
{
if(!chan->is_multi)
{
outl (0xFFFFF | (0x3 << 20) | (chan->frag_number << 24), chan->iobase + VIA_PCM_STOPRATE);
udelay (20);
via_ac97_wait_idle (card);
}
}
DPRINTK ("inl (0x%lX) = %x\n",
chan->iobase + VIA_PCM_TABLE_ADDR,
inl(chan->iobase + VIA_PCM_TABLE_ADDR));
DPRINTK ("EXIT\n");
return 0;
err_out_nomem:
printk (KERN_ERR PFX "DMA buffer alloc fail, aborting\n");
via_chan_buffer_free (card, chan);
DPRINTK ("EXIT\n");
return -ENOMEM;
}
/**
* via_chan_free - Release a PCM channel
* @card: Private audio chip info
* @chan: Channel to be released
*
* Performs all the functions necessary to clean up
* an initialized channel.
*
* Currently these functions include disabled any
* active DMA operations, setting the PCM channel
* back to a known state, and releasing any allocated
* sound buffers.
*/
static void via_chan_free (struct via_info *card, struct via_channel *chan)
{
DPRINTK ("ENTER\n");
spin_lock_irq (&card->lock);
/* stop any existing channel output */
via_chan_status_clear (chan->iobase);
via_chan_stop (chan->iobase);
via_chan_status_clear (chan->iobase);
spin_unlock_irq (&card->lock);
synchronize_irq(card->pdev->irq);
DPRINTK ("EXIT\n");
}
static void via_chan_buffer_free (struct via_info *card, struct via_channel *chan)
{
int i;
DPRINTK ("ENTER\n");
/* zero location of DMA-able scatter-gather info table */
via_ac97_wait_idle(card);
outl (0, chan->iobase + VIA_PCM_TABLE_ADDR);
for (i = 0; i < chan->page_number; i++)
if (chan->pgtbl[i].cpuaddr) {
pci_free_consistent (card->pdev, PAGE_SIZE,
chan->pgtbl[i].cpuaddr,
chan->pgtbl[i].handle);
chan->pgtbl[i].cpuaddr = NULL;
chan->pgtbl[i].handle = 0;
}
chan->page_number = 0;
if (chan->sgtable) {
pci_free_consistent (card->pdev,
(sizeof (struct via_sgd_table) * chan->frag_number),
(void*)chan->sgtable, chan->sgt_handle);
chan->sgtable = NULL;
}
DPRINTK ("EXIT\n");
}
/**
* via_chan_pcm_fmt - Update PCM channel settings
* @chan: Channel to be updated
* @reset: Boolean. If non-zero, channel will be reset
* to 8-bit mono mode.
*
* Stores the settings of the current PCM format,
* 8-bit or 16-bit, and mono/stereo, into the
* hardware settings for the specified channel.
* If @reset is non-zero, the channel is reset
* to 8-bit mono mode. Otherwise, the channel
* is set to the values stored in the channel
* information struct @chan.
*/
static void via_chan_pcm_fmt (struct via_channel *chan, int reset)
{
DPRINTK ("ENTER, pcm_fmt=0x%02X, reset=%s\n",
chan->pcm_fmt, reset ? "yes" : "no");
assert (chan != NULL);
if (reset)
{
/* reset to 8-bit mono mode */
chan->pcm_fmt = 0;
chan->channels = 1;
}
/* enable interrupts on FLAG and EOL */
chan->pcm_fmt |= VIA_CHAN_TYPE_MASK;
/* if we are recording, enable recording fifo bit */
if (chan->is_record)
chan->pcm_fmt |= VIA_PCM_REC_FIFO;
/* set interrupt select bits where applicable (PCM in & out channels) */
if (!chan->is_record)
chan->pcm_fmt |= VIA_CHAN_TYPE_INT_SELECT;
DPRINTK("SET FMT - %02x %02x\n", chan->intmask , chan->is_multi);
if(chan->intmask)
{
u32 m;
/*
* Channel 0x4 is up to 6 x 16bit and has to be
* programmed differently
*/
if(chan->is_multi)
{
u8 c = 0;
/*
* Load the type bit for num channels
* and 8/16bit
*/
if(chan->pcm_fmt & VIA_PCM_FMT_16BIT)
c = 1 << 7;
if(chan->pcm_fmt & VIA_PCM_FMT_STEREO)
c |= (2<<4);
else
c |= (1<<4);
outb(c, chan->iobase + VIA_PCM_TYPE);
/*
* Set the channel steering
* Mono
* Channel 0 to slot 3
* Channel 0 to slot 4
* Stereo
* Channel 0 to slot 3
* Channel 1 to slot 4
*/
switch(chan->channels)
{
case 1:
outl(0xFF000000 | (1<<0) | (1<<4) , chan->iobase + VIA_PCM_STOPRATE);
break;
case 2:
outl(0xFF000000 | (1<<0) | (2<<4) , chan->iobase + VIA_PCM_STOPRATE);
break;
case 4:
outl(0xFF000000 | (1<<0) | (2<<4) | (3<<8) | (4<<12), chan->iobase + VIA_PCM_STOPRATE);
break;
case 6:
outl(0xFF000000 | (1<<0) | (2<<4) | (5<<8) | (6<<12) | (3<<16) | (4<<20), chan->iobase + VIA_PCM_STOPRATE);
break;
}
}
else
{
/*
* New style, turn off channel volume
* control, set bits in the right register
*/
outb(0x0, chan->iobase + VIA_PCM_LEFTVOL);
outb(0x0, chan->iobase + VIA_PCM_RIGHTVOL);
m = inl(chan->iobase + VIA_PCM_STOPRATE);
m &= ~(3<<20);
if(chan->pcm_fmt & VIA_PCM_FMT_STEREO)
m |= (1 << 20);
if(chan->pcm_fmt & VIA_PCM_FMT_16BIT)
m |= (1 << 21);
outl(m, chan->iobase + VIA_PCM_STOPRATE);
}
}
else
outb (chan->pcm_fmt, chan->iobase + VIA_PCM_TYPE);
DPRINTK ("EXIT, pcm_fmt = 0x%02X, reg = 0x%02X\n",
chan->pcm_fmt,
inb (chan->iobase + VIA_PCM_TYPE));
}
/**
* via_chan_clear - Stop DMA channel operation, and reset pointers
* @card: the chip to accessed
* @chan: Channel to be cleared
*
* Call via_chan_stop to halt DMA operations, and then resets
* all software pointers which track DMA operation.
*/
static void via_chan_clear (struct via_info *card, struct via_channel *chan)
{
DPRINTK ("ENTER\n");
via_chan_stop (chan->iobase);
via_chan_buffer_free(card, chan);
chan->is_active = 0;
chan->is_mapped = 0;
chan->is_enabled = 1;
chan->slop_len = 0;
chan->sw_ptr = 0;
chan->n_irqs = 0;
atomic_set (&chan->hw_ptr, 0);
DPRINTK ("EXIT\n");
}
/**
* via_chan_set_speed - Set PCM sample rate for given channel
* @card: Private info for specified board
* @chan: Channel whose sample rate will be adjusted
* @val: New sample rate, in Khz
*
* Helper function for the %SNDCTL_DSP_SPEED ioctl. OSS semantics
* demand that all audio operations halt (if they are not already
* halted) when the %SNDCTL_DSP_SPEED is given.
*
* This function halts all audio operations for the given channel
* @chan, and then calls via_set_rate to set the audio hardware
* to the new rate.
*/
static int via_chan_set_speed (struct via_info *card,
struct via_channel *chan, int val)
{
DPRINTK ("ENTER, requested rate = %d\n", val);
via_chan_clear (card, chan);
val = via_set_rate (card->ac97, chan, val);
DPRINTK ("EXIT, returning %d\n", val);
return val;
}
/**
* via_chan_set_fmt - Set PCM sample size for given channel
* @card: Private info for specified board
* @chan: Channel whose sample size will be adjusted
* @val: New sample size, use the %AFMT_xxx constants
*
* Helper function for the %SNDCTL_DSP_SETFMT ioctl. OSS semantics
* demand that all audio operations halt (if they are not already
* halted) when the %SNDCTL_DSP_SETFMT is given.
*
* This function halts all audio operations for the given channel
* @chan, and then calls via_chan_pcm_fmt to set the audio hardware
* to the new sample size, either 8-bit or 16-bit.
*/
static int via_chan_set_fmt (struct via_info *card,
struct via_channel *chan, int val)
{
DPRINTK ("ENTER, val=%s\n",
val == AFMT_U8 ? "AFMT_U8" :
val == AFMT_S16_LE ? "AFMT_S16_LE" :
"unknown");
via_chan_clear (card, chan);
assert (val != AFMT_QUERY); /* this case is handled elsewhere */
switch (val) {
case AFMT_S16_LE:
if ((chan->pcm_fmt & VIA_PCM_FMT_16BIT) == 0) {
chan->pcm_fmt |= VIA_PCM_FMT_16BIT;
via_chan_pcm_fmt (chan, 0);
}
break;
case AFMT_U8:
if (chan->pcm_fmt & VIA_PCM_FMT_16BIT) {
chan->pcm_fmt &= ~VIA_PCM_FMT_16BIT;
via_chan_pcm_fmt (chan, 0);
}
break;
default:
DPRINTK ("unknown AFMT: 0x%X\n", val);
val = AFMT_S16_LE;
}
DPRINTK ("EXIT\n");
return val;
}
/**
* via_chan_set_stereo - Enable or disable stereo for a DMA channel
* @card: Private info for specified board
* @chan: Channel whose stereo setting will be adjusted
* @val: New sample size, use the %AFMT_xxx constants
*
* Helper function for the %SNDCTL_DSP_CHANNELS and %SNDCTL_DSP_STEREO ioctls. OSS semantics
* demand that all audio operations halt (if they are not already
* halted) when %SNDCTL_DSP_CHANNELS or SNDCTL_DSP_STEREO is given.
*
* This function halts all audio operations for the given channel
* @chan, and then calls via_chan_pcm_fmt to set the audio hardware
* to enable or disable stereo.
*/
static int via_chan_set_stereo (struct via_info *card,
struct via_channel *chan, int val)
{
DPRINTK ("ENTER, channels = %d\n", val);
via_chan_clear (card, chan);
switch (val) {
/* mono */
case 1:
chan->pcm_fmt &= ~VIA_PCM_FMT_STEREO;
chan->channels = 1;
via_chan_pcm_fmt (chan, 0);
break;
/* stereo */
case 2:
chan->pcm_fmt |= VIA_PCM_FMT_STEREO;
chan->channels = 2;
via_chan_pcm_fmt (chan, 0);
break;
case 4:
case 6:
if(chan->is_multi)
{
chan->pcm_fmt |= VIA_PCM_FMT_STEREO;
chan->channels = val;
break;
}
/* unknown */
default:
val = -EINVAL;
break;
}
DPRINTK ("EXIT, returning %d\n", val);
return val;
}
static int via_chan_set_buffering (struct via_info *card,
struct via_channel *chan, int val)
{
int shift;
DPRINTK ("ENTER\n");
/* in both cases the buffer cannot be changed */
if (chan->is_active || chan->is_mapped) {
DPRINTK ("EXIT\n");
return -EINVAL;
}
/* called outside SETFRAGMENT */
/* set defaults or do nothing */
if (val < 0) {
if (chan->frag_size && chan->frag_number)
goto out;
DPRINTK ("\n");
chan->frag_size = (VIA_DEFAULT_FRAG_TIME * chan->rate * chan->channels
* ((chan->pcm_fmt & VIA_PCM_FMT_16BIT) ? 2 : 1)) / 1000 - 1;
shift = 0;
while (chan->frag_size) {
chan->frag_size >>= 1;
shift++;
}
chan->frag_size = 1 << shift;
chan->frag_number = (VIA_DEFAULT_BUFFER_TIME / VIA_DEFAULT_FRAG_TIME);
DPRINTK ("setting default values %d %d\n", chan->frag_size, chan->frag_number);
} else {
chan->frag_size = 1 << (val & 0xFFFF);
chan->frag_number = (val >> 16) & 0xFFFF;
DPRINTK ("using user values %d %d\n", chan->frag_size, chan->frag_number);
}
/* quake3 wants frag_number to be a power of two */
shift = 0;
while (chan->frag_number) {
chan->frag_number >>= 1;
shift++;
}
chan->frag_number = 1 << shift;
if (chan->frag_size > VIA_MAX_FRAG_SIZE)
chan->frag_size = VIA_MAX_FRAG_SIZE;
else if (chan->frag_size < VIA_MIN_FRAG_SIZE)
chan->frag_size = VIA_MIN_FRAG_SIZE;
if (chan->frag_number < VIA_MIN_FRAG_NUMBER)
chan->frag_number = VIA_MIN_FRAG_NUMBER;
if (chan->frag_number > VIA_MAX_FRAG_NUMBER)
chan->frag_number = VIA_MAX_FRAG_NUMBER;
if ((chan->frag_number * chan->frag_size) / PAGE_SIZE > VIA_MAX_BUFFER_DMA_PAGES)
chan->frag_number = (VIA_MAX_BUFFER_DMA_PAGES * PAGE_SIZE) / chan->frag_size;
out:
if (chan->is_record)
atomic_set (&chan->n_frags, 0);
else
atomic_set (&chan->n_frags, chan->frag_number);
DPRINTK ("EXIT\n");
return 0;
}
#ifdef VIA_CHAN_DUMP_BUFS
/**
* via_chan_dump_bufs - Display DMA table contents
* @chan: Channel whose DMA table will be displayed
*
* Debugging function which displays the contents of the
* scatter-gather DMA table for the given channel @chan.
*/
static void via_chan_dump_bufs (struct via_channel *chan)
{
int i;
for (i = 0; i < chan->frag_number; i++) {
DPRINTK ("#%02d: addr=%x, count=%u, flag=%d, eol=%d\n",
i, chan->sgtable[i].addr,
chan->sgtable[i].count & 0x00FFFFFF,
chan->sgtable[i].count & VIA_FLAG ? 1 : 0,
chan->sgtable[i].count & VIA_EOL ? 1 : 0);
}
DPRINTK ("buf_in_use = %d, nextbuf = %d\n",
atomic_read (&chan->buf_in_use),
atomic_read (&chan->sw_ptr));
}
#endif /* VIA_CHAN_DUMP_BUFS */
/**
* via_chan_flush_frag - Flush partially-full playback buffer to hardware
* @chan: Channel whose DMA table will be flushed
*
* Flushes partially-full playback buffer to hardware.
*/
static void via_chan_flush_frag (struct via_channel *chan)
{
DPRINTK ("ENTER\n");
assert (chan->slop_len > 0);
if (chan->sw_ptr == (chan->frag_number - 1))
chan->sw_ptr = 0;
else
chan->sw_ptr++;
chan->slop_len = 0;
assert (atomic_read (&chan->n_frags) > 0);
atomic_dec (&chan->n_frags);
DPRINTK ("EXIT\n");
}
/**
* via_chan_maybe_start - Initiate audio hardware DMA operation
* @chan: Channel whose DMA is to be started
*
* Initiate DMA operation, if the DMA engine for the given
* channel @chan is not already active.
*/
static inline void via_chan_maybe_start (struct via_channel *chan)
{
assert (chan->is_active == sg_active(chan->iobase));
DPRINTK ("MAYBE START %s\n", chan->name);
if (!chan->is_active && chan->is_enabled) {
chan->is_active = 1;
sg_begin (chan);
DPRINTK ("starting channel %s\n", chan->name);
}
}
/****************************************************************
*
* Interface to ac97-codec module
*
*
*/
/**
* via_ac97_wait_idle - Wait until AC97 codec is not busy
* @card: Private info for specified board
*
* Sleep until the AC97 codec is no longer busy.
* Returns the final value read from the SGD
* register being polled.
*/
static u8 via_ac97_wait_idle (struct via_info *card)
{
u8 tmp8;
int counter = VIA_COUNTER_LIMIT;
DPRINTK ("ENTER/EXIT\n");
assert (card != NULL);
assert (card->pdev != NULL);
do {
udelay (15);
tmp8 = inb (card->baseaddr + 0x83);
} while ((tmp8 & VIA_CR83_BUSY) && (counter-- > 0));
if (tmp8 & VIA_CR83_BUSY)
printk (KERN_WARNING PFX "timeout waiting on AC97 codec\n");
return tmp8;
}
/**
* via_ac97_read_reg - Read AC97 standard register
* @codec: Pointer to generic AC97 codec info
* @reg: Index of AC97 register to be read
*
* Read the value of a single AC97 codec register,
* as defined by the Intel AC97 specification.
*
* Defines the standard AC97 read-register operation
* required by the kernel's ac97_codec interface.
*
* Returns the 16-bit value stored in the specified
* register.
*/
static u16 via_ac97_read_reg (struct ac97_codec *codec, u8 reg)
{
unsigned long data;
struct via_info *card;
int counter;
DPRINTK ("ENTER\n");
assert (codec != NULL);
assert (codec->private_data != NULL);
card = codec->private_data;
spin_lock(&card->ac97_lock);
/* Every time we write to register 80 we cause a transaction.
The only safe way to clear the valid bit is to write it at
the same time as the command */
data = (reg << 16) | VIA_CR80_READ | VIA_CR80_VALID;
outl (data, card->baseaddr + VIA_BASE0_AC97_CTRL);
udelay (20);
for (counter = VIA_COUNTER_LIMIT; counter > 0; counter--) {
udelay (1);
if ((((data = inl(card->baseaddr + VIA_BASE0_AC97_CTRL)) &
(VIA_CR80_VALID|VIA_CR80_BUSY)) == VIA_CR80_VALID))
goto out;
}
printk (KERN_WARNING PFX "timeout while reading AC97 codec (0x%lX)\n", data);
goto err_out;
out:
/* Once the valid bit has become set, we must wait a complete AC97
frame before the data has settled. */
udelay(25);
data = (unsigned long) inl (card->baseaddr + VIA_BASE0_AC97_CTRL);
outb (0x02, card->baseaddr + 0x83);
if (((data & 0x007F0000) >> 16) == reg) {
DPRINTK ("EXIT, success, data=0x%lx, retval=0x%lx\n",
data, data & 0x0000FFFF);
spin_unlock(&card->ac97_lock);
return data & 0x0000FFFF;
}
printk (KERN_WARNING "via82cxxx_audio: not our index: reg=0x%x, newreg=0x%lx\n",
reg, ((data & 0x007F0000) >> 16));
err_out:
spin_unlock(&card->ac97_lock);
DPRINTK ("EXIT, returning 0\n");
return 0;
}
/**
* via_ac97_write_reg - Write AC97 standard register
* @codec: Pointer to generic AC97 codec info
* @reg: Index of AC97 register to be written
* @value: Value to be written to AC97 register
*
* Write the value of a single AC97 codec register,
* as defined by the Intel AC97 specification.
*
* Defines the standard AC97 write-register operation
* required by the kernel's ac97_codec interface.
*/
static void via_ac97_write_reg (struct ac97_codec *codec, u8 reg, u16 value)
{
u32 data;
struct via_info *card;
int counter;
DPRINTK ("ENTER\n");
assert (codec != NULL);
assert (codec->private_data != NULL);
card = codec->private_data;
spin_lock(&card->ac97_lock);
data = (reg << 16) + value;
outl (data, card->baseaddr + VIA_BASE0_AC97_CTRL);
udelay (10);
for (counter = VIA_COUNTER_LIMIT; counter > 0; counter--) {
if ((inb (card->baseaddr + 0x83) & VIA_CR83_BUSY) == 0)
goto out;
udelay (15);
}
printk (KERN_WARNING PFX "timeout after AC97 codec write (0x%X, 0x%X)\n", reg, value);
out:
spin_unlock(&card->ac97_lock);
DPRINTK ("EXIT\n");
}
static int via_mixer_open (struct inode *inode, struct file *file)
{
int minor = iminor(inode);
struct via_info *card;
struct pci_dev *pdev = NULL;
struct pci_driver *drvr;
DPRINTK ("ENTER\n");
while ((pdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, pdev)) != NULL) {
drvr = pci_dev_driver (pdev);
if (drvr == &via_driver) {
assert (pci_get_drvdata (pdev) != NULL);
card = pci_get_drvdata (pdev);
if (card->ac97->dev_mixer == minor)
goto match;
}
}
DPRINTK ("EXIT, returning -ENODEV\n");
return -ENODEV;
match:
pci_dev_put(pdev);
file->private_data = card->ac97;
DPRINTK ("EXIT, returning 0\n");
return nonseekable_open(inode, file);
}
static int via_mixer_ioctl (struct inode *inode, struct file *file, unsigned int cmd,
unsigned long arg)
{
struct ac97_codec *codec = file->private_data;
struct via_info *card;
int nonblock = (file->f_flags & O_NONBLOCK);
int rc;
DPRINTK ("ENTER\n");
assert (codec != NULL);
card = codec->private_data;
assert (card != NULL);
rc = via_syscall_down (card, nonblock);
if (rc) goto out;
#if 0
/*
* Intercept volume control on 8233 and 8235
*/
if(card->volume)
{
switch(cmd)
{
case SOUND_MIXER_READ_VOLUME:
return card->mixer_vol;
case SOUND_MIXER_WRITE_VOLUME:
{
int v;
if(get_user(v, (int *)arg))
{
rc = -EFAULT;
goto out;
}
card->mixer_vol = v;
}
}
}
#endif
rc = codec->mixer_ioctl(codec, cmd, arg);
mutex_unlock(&card->syscall_mutex);
out:
DPRINTK ("EXIT, returning %d\n", rc);
return rc;
}
static const struct file_operations via_mixer_fops = {
.owner = THIS_MODULE,
.open = via_mixer_open,
.llseek = no_llseek,
.ioctl = via_mixer_ioctl,
};
static int __devinit via_ac97_reset (struct via_info *card)
{
struct pci_dev *pdev = card->pdev;
u8 tmp8;
u16 tmp16;
DPRINTK ("ENTER\n");
assert (pdev != NULL);
#ifndef NDEBUG
{
u8 r40,r41,r42,r43,r44,r48;
pci_read_config_byte (card->pdev, 0x40, &r40);
pci_read_config_byte (card->pdev, 0x41, &r41);
pci_read_config_byte (card->pdev, 0x42, &r42);
pci_read_config_byte (card->pdev, 0x43, &r43);
pci_read_config_byte (card->pdev, 0x44, &r44);
pci_read_config_byte (card->pdev, 0x48, &r48);
DPRINTK ("PCI config: %02X %02X %02X %02X %02X %02X\n",
r40,r41,r42,r43,r44,r48);
spin_lock_irq (&card->lock);
DPRINTK ("regs==%02X %02X %02X %08X %08X %08X %08X\n",
inb (card->baseaddr + 0x00),
inb (card->baseaddr + 0x01),
inb (card->baseaddr + 0x02),
inl (card->baseaddr + 0x04),
inl (card->baseaddr + 0x0C),
inl (card->baseaddr + 0x80),
inl (card->baseaddr + 0x84));
spin_unlock_irq (&card->lock);
}
#endif
/*
* Reset AC97 controller: enable, disable, enable,
* pausing after each command for good luck. Only
* do this if the codec is not ready, because it causes
* loud pops and such due to such a hard codec reset.
*/
pci_read_config_byte (pdev, VIA_ACLINK_STATUS, &tmp8);
if ((tmp8 & VIA_CR40_AC97_READY) == 0) {
pci_write_config_byte (pdev, VIA_ACLINK_CTRL,
VIA_CR41_AC97_ENABLE |
VIA_CR41_AC97_RESET |
VIA_CR41_AC97_WAKEUP);
udelay (100);
pci_write_config_byte (pdev, VIA_ACLINK_CTRL, 0);
udelay (100);
pci_write_config_byte (pdev, VIA_ACLINK_CTRL,
VIA_CR41_AC97_ENABLE |
VIA_CR41_PCM_ENABLE |
VIA_CR41_VRA | VIA_CR41_AC97_RESET);
udelay (100);
}
/* Make sure VRA is enabled, in case we didn't do a
* complete codec reset, above
*/
pci_read_config_byte (pdev, VIA_ACLINK_CTRL, &tmp8);
if (((tmp8 & VIA_CR41_VRA) == 0) ||
((tmp8 & VIA_CR41_AC97_ENABLE) == 0) ||
((tmp8 & VIA_CR41_PCM_ENABLE) == 0) ||
((tmp8 & VIA_CR41_AC97_RESET) == 0)) {
pci_write_config_byte (pdev, VIA_ACLINK_CTRL,
VIA_CR41_AC97_ENABLE |
VIA_CR41_PCM_ENABLE |
VIA_CR41_VRA | VIA_CR41_AC97_RESET);
udelay (100);
}
if(card->legacy)
{
#if 0 /* this breaks on K7M */
/* disable legacy stuff */
pci_write_config_byte (pdev, 0x42, 0x00);
udelay(10);
#endif
/* route FM trap to IRQ, disable FM trap */
pci_write_config_byte (pdev, 0x48, 0x05);
udelay(10);
}
/* disable all codec GPI interrupts */
outl (0, pci_resource_start (pdev, 0) + 0x8C);
/* WARNING: this line is magic. Remove this
* and things break. */
/* enable variable rate */
tmp16 = via_ac97_read_reg (card->ac97, AC97_EXTENDED_STATUS);
if ((tmp16 & 1) == 0)
via_ac97_write_reg (card->ac97, AC97_EXTENDED_STATUS, tmp16 | 1);
DPRINTK ("EXIT, returning 0\n");
return 0;
}
static void via_ac97_codec_wait (struct ac97_codec *codec)
{
assert (codec->private_data != NULL);
via_ac97_wait_idle (codec->private_data);
}
static int __devinit via_ac97_init (struct via_info *card)
{
int rc;
u16 tmp16;
DPRINTK ("ENTER\n");
assert (card != NULL);
card->ac97 = ac97_alloc_codec();
if(card->ac97 == NULL)
return -ENOMEM;
card->ac97->private_data = card;
card->ac97->codec_read = via_ac97_read_reg;
card->ac97->codec_write = via_ac97_write_reg;
card->ac97->codec_wait = via_ac97_codec_wait;
card->ac97->dev_mixer = register_sound_mixer (&via_mixer_fops, -1);
if (card->ac97->dev_mixer < 0) {
printk (KERN_ERR PFX "unable to register AC97 mixer, aborting\n");
DPRINTK ("EXIT, returning -EIO\n");
ac97_release_codec(card->ac97);
return -EIO;
}
rc = via_ac97_reset (card);
if (rc) {
printk (KERN_ERR PFX "unable to reset AC97 codec, aborting\n");
goto err_out;
}
mdelay(10);
if (ac97_probe_codec (card->ac97) == 0) {
printk (KERN_ERR PFX "unable to probe AC97 codec, aborting\n");
rc = -EIO;
goto err_out;
}
/* enable variable rate */
tmp16 = via_ac97_read_reg (card->ac97, AC97_EXTENDED_STATUS);
via_ac97_write_reg (card->ac97, AC97_EXTENDED_STATUS, tmp16 | 1);
/*
* If we cannot enable VRA, we have a locked-rate codec.
* We try again to enable VRA before assuming so, however.
*/
tmp16 = via_ac97_read_reg (card->ac97, AC97_EXTENDED_STATUS);
if ((tmp16 & 1) == 0) {
via_ac97_write_reg (card->ac97, AC97_EXTENDED_STATUS, tmp16 | 1);
tmp16 = via_ac97_read_reg (card->ac97, AC97_EXTENDED_STATUS);
if ((tmp16 & 1) == 0) {
card->locked_rate = 1;
printk (KERN_WARNING PFX "Codec rate locked at 48Khz\n");
}
}
DPRINTK ("EXIT, returning 0\n");
return 0;
err_out:
unregister_sound_mixer (card->ac97->dev_mixer);
DPRINTK ("EXIT, returning %d\n", rc);
ac97_release_codec(card->ac97);
return rc;
}
static void via_ac97_cleanup (struct via_info *card)
{
DPRINTK ("ENTER\n");
assert (card != NULL);
assert (card->ac97->dev_mixer >= 0);
unregister_sound_mixer (card->ac97->dev_mixer);
ac97_release_codec(card->ac97);
DPRINTK ("EXIT\n");
}
/****************************************************************
*
* Interrupt-related code
*
*/
/**
* via_intr_channel - handle an interrupt for a single channel
* @card: unused
* @chan: handle interrupt for this channel
*
* This is the "meat" of the interrupt handler,
* containing the actions taken each time an interrupt
* occurs. All communication and coordination with
* userspace takes place here.
*
* Locking: inside card->lock
*/
static void via_intr_channel (struct via_info *card, struct via_channel *chan)
{
u8 status;
int n;
/* check pertinent bits of status register for action bits */
status = inb (chan->iobase) & (VIA_SGD_FLAG | VIA_SGD_EOL | VIA_SGD_STOPPED);
if (!status)
return;
/* acknowledge any flagged bits ASAP */
outb (status, chan->iobase);
if (!chan->sgtable) /* XXX: temporary solution */
return;
/* grab current h/w ptr value */
n = atomic_read (&chan->hw_ptr);
/* sanity check: make sure our h/w ptr doesn't have a weird value */
assert (n >= 0);
assert (n < chan->frag_number);
/* reset SGD data structure in memory to reflect a full buffer,
* and advance the h/w ptr, wrapping around to zero if needed
*/
if (n == (chan->frag_number - 1)) {
chan->sgtable[n].count = cpu_to_le32(chan->frag_size | VIA_EOL);
atomic_set (&chan->hw_ptr, 0);
} else {
chan->sgtable[n].count = cpu_to_le32(chan->frag_size | VIA_FLAG);
atomic_inc (&chan->hw_ptr);
}
/* accounting crap for SNDCTL_DSP_GETxPTR */
chan->n_irqs++;
chan->bytes += chan->frag_size;
/* FIXME - signed overflow is undefined */
if (chan->bytes < 0) /* handle overflow of 31-bit value */
chan->bytes = chan->frag_size;
/* all following checks only occur when not in mmap(2) mode */
if (!chan->is_mapped)
{
/* If we are recording, then n_frags represents the number
* of fragments waiting to be handled by userspace.
* If we are playback, then n_frags represents the number
* of fragments remaining to be filled by userspace.
* We increment here. If we reach max number of fragments,
* this indicates an underrun/overrun. For this case under OSS,
* we stop the record/playback process.
*/
if (atomic_read (&chan->n_frags) < chan->frag_number)
atomic_inc (&chan->n_frags);
assert (atomic_read (&chan->n_frags) <= chan->frag_number);
if (atomic_read (&chan->n_frags) == chan->frag_number) {
chan->is_active = 0;
via_chan_stop (chan->iobase);
}
}
/* wake up anyone listening to see when interrupts occur */
wake_up_all (&chan->wait);
DPRINTK ("%s intr, status=0x%02X, hwptr=0x%lX, chan->hw_ptr=%d\n",
chan->name, status, (long) inl (chan->iobase + 0x04),
atomic_read (&chan->hw_ptr));
DPRINTK ("%s intr, channel n_frags == %d, missed %d\n", chan->name,
atomic_read (&chan->n_frags), missed);
}
static irqreturn_t via_interrupt(int irq, void *dev_id)
{
struct via_info *card = dev_id;
u32 status32;
/* to minimize interrupt sharing costs, we use the SGD status
* shadow register to check the status of all inputs and
* outputs with a single 32-bit bus read. If no interrupt
* conditions are flagged, we exit immediately
*/
status32 = inl (card->baseaddr + VIA_BASE0_SGD_STATUS_SHADOW);
if (!(status32 & VIA_INTR_MASK))
{
#ifdef CONFIG_MIDI_VIA82CXXX
if (card->midi_devc)
uart401intr(irq, card->midi_devc);
#endif
return IRQ_HANDLED;
}
DPRINTK ("intr, status32 == 0x%08X\n", status32);
/* synchronize interrupt handling under SMP. this spinlock
* goes away completely on UP
*/
spin_lock (&card->lock);
if (status32 & VIA_INTR_OUT)
via_intr_channel (card, &card->ch_out);
if (status32 & VIA_INTR_IN)
via_intr_channel (card, &card->ch_in);
if (status32 & VIA_INTR_FM)
via_intr_channel (card, &card->ch_fm);
spin_unlock (&card->lock);
return IRQ_HANDLED;
}
static irqreturn_t via_new_interrupt(int irq, void *dev_id)
{
struct via_info *card = dev_id;
u32 status32;
/* to minimize interrupt sharing costs, we use the SGD status
* shadow register to check the status of all inputs and
* outputs with a single 32-bit bus read. If no interrupt
* conditions are flagged, we exit immediately
*/
status32 = inl (card->baseaddr + VIA_BASE0_SGD_STATUS_SHADOW);
if (!(status32 & VIA_NEW_INTR_MASK))
return IRQ_NONE;
/*
* goes away completely on UP
*/
spin_lock (&card->lock);
via_intr_channel (card, &card->ch_out);
via_intr_channel (card, &card->ch_in);
via_intr_channel (card, &card->ch_fm);
spin_unlock (&card->lock);
return IRQ_HANDLED;
}
/**
* via_interrupt_init - Initialize interrupt handling
* @card: Private info for specified board
*
* Obtain and reserve IRQ for using in handling audio events.
* Also, disable any IRQ-generating resources, to make sure
* we don't get interrupts before we want them.
*/
static int via_interrupt_init (struct via_info *card)
{
u8 tmp8;
DPRINTK ("ENTER\n");
assert (card != NULL);
assert (card->pdev != NULL);
/* check for sane IRQ number. can this ever happen? */
if (card->pdev->irq < 2) {
printk (KERN_ERR PFX "insane IRQ %d, aborting\n",
card->pdev->irq);
DPRINTK ("EXIT, returning -EIO\n");
return -EIO;
}
/* VIA requires this is done */
pci_write_config_byte(card->pdev, PCI_INTERRUPT_LINE, card->pdev->irq);
if(card->legacy)
{
/* make sure FM irq is not routed to us */
pci_read_config_byte (card->pdev, VIA_FM_NMI_CTRL, &tmp8);
if ((tmp8 & VIA_CR48_FM_TRAP_TO_NMI) == 0) {
tmp8 |= VIA_CR48_FM_TRAP_TO_NMI;
pci_write_config_byte (card->pdev, VIA_FM_NMI_CTRL, tmp8);
}
if (request_irq (card->pdev->irq, via_interrupt, IRQF_SHARED, VIA_MODULE_NAME, card)) {
printk (KERN_ERR PFX "unable to obtain IRQ %d, aborting\n",
card->pdev->irq);
DPRINTK ("EXIT, returning -EBUSY\n");
return -EBUSY;
}
}
else
{
if (request_irq (card->pdev->irq, via_new_interrupt, IRQF_SHARED, VIA_MODULE_NAME, card)) {
printk (KERN_ERR PFX "unable to obtain IRQ %d, aborting\n",
card->pdev->irq);
DPRINTK ("EXIT, returning -EBUSY\n");
return -EBUSY;
}
}
DPRINTK ("EXIT, returning 0\n");
return 0;
}
/****************************************************************
*
* OSS DSP device
*
*/
static const struct file_operations via_dsp_fops = {
.owner = THIS_MODULE,
.open = via_dsp_open,
.release = via_dsp_release,
.read = via_dsp_read,
.write = via_dsp_write,
.poll = via_dsp_poll,
.llseek = no_llseek,
.ioctl = via_dsp_ioctl,
.mmap = via_dsp_mmap,
};
static int __devinit via_dsp_init (struct via_info *card)
{
u8 tmp8;
DPRINTK ("ENTER\n");
assert (card != NULL);
if(card->legacy)
{
/* turn off legacy features, if not already */
pci_read_config_byte (card->pdev, VIA_FUNC_ENABLE, &tmp8);
if (tmp8 & (VIA_CR42_SB_ENABLE | VIA_CR42_FM_ENABLE)) {
tmp8 &= ~(VIA_CR42_SB_ENABLE | VIA_CR42_FM_ENABLE);
pci_write_config_byte (card->pdev, VIA_FUNC_ENABLE, tmp8);
}
}
via_stop_everything (card);
card->dev_dsp = register_sound_dsp (&via_dsp_fops, -1);
if (card->dev_dsp < 0) {
DPRINTK ("EXIT, returning -ENODEV\n");
return -ENODEV;
}
DPRINTK ("EXIT, returning 0\n");
return 0;
}
static void via_dsp_cleanup (struct via_info *card)
{
DPRINTK ("ENTER\n");
assert (card != NULL);
assert (card->dev_dsp >= 0);
via_stop_everything (card);
unregister_sound_dsp (card->dev_dsp);
DPRINTK ("EXIT\n");
}
static struct page * via_mm_nopage (struct vm_area_struct * vma,
unsigned long address, int *type)
{
struct via_info *card = vma->vm_private_data;
struct via_channel *chan = &card->ch_out;
unsigned long max_bufs;
struct page *dmapage;
unsigned long pgoff;
int rd, wr;
DPRINTK ("ENTER, start %lXh, ofs %lXh, pgoff %ld, addr %lXh\n",
vma->vm_start,
address - vma->vm_start,
(address - vma->vm_start) >> PAGE_SHIFT,
address);
if (address > vma->vm_end) {
DPRINTK ("EXIT, returning NOPAGE_SIGBUS\n");
return NOPAGE_SIGBUS; /* Disallow mremap */
}
if (!card) {
DPRINTK ("EXIT, returning NOPAGE_SIGBUS\n");
return NOPAGE_SIGBUS; /* Nothing allocated */
}
pgoff = vma->vm_pgoff + ((address - vma->vm_start) >> PAGE_SHIFT);
rd = card->ch_in.is_mapped;
wr = card->ch_out.is_mapped;
max_bufs = chan->frag_number;
if (rd && wr)
max_bufs *= 2;
if (pgoff >= max_bufs)
return NOPAGE_SIGBUS;
/* if full-duplex (read+write) and we have two sets of bufs,
* then the playback buffers come first, sez soundcard.c */
if (pgoff >= chan->page_number) {
pgoff -= chan->page_number;
chan = &card->ch_in;
} else if (!wr)
chan = &card->ch_in;
assert ((((unsigned long)chan->pgtbl[pgoff].cpuaddr) % PAGE_SIZE) == 0);
dmapage = virt_to_page (chan->pgtbl[pgoff].cpuaddr);
DPRINTK ("EXIT, returning page %p for cpuaddr %lXh\n",
dmapage, (unsigned long) chan->pgtbl[pgoff].cpuaddr);
get_page (dmapage);
if (type)
*type = VM_FAULT_MINOR;
return dmapage;
}
#ifndef VM_RESERVED
static int via_mm_swapout (struct page *page, struct file *filp)
{
return 0;
}
#endif /* VM_RESERVED */
static struct vm_operations_struct via_mm_ops = {
.nopage = via_mm_nopage,
#ifndef VM_RESERVED
.swapout = via_mm_swapout,
#endif
};
static int via_dsp_mmap(struct file *file, struct vm_area_struct *vma)
{
struct via_info *card;
int nonblock = (file->f_flags & O_NONBLOCK);
int rc = -EINVAL, rd=0, wr=0;
unsigned long max_size, size, start, offset;
assert (file != NULL);
assert (vma != NULL);
card = file->private_data;
assert (card != NULL);
DPRINTK ("ENTER, start %lXh, size %ld, pgoff %ld\n",
vma->vm_start,
vma->vm_end - vma->vm_start,
vma->vm_pgoff);
max_size = 0;
if (vma->vm_flags & VM_READ) {
rd = 1;
via_chan_set_buffering(card, &card->ch_in, -1);
via_chan_buffer_init (card, &card->ch_in);
max_size += card->ch_in.page_number << PAGE_SHIFT;
}
if (vma->vm_flags & VM_WRITE) {
wr = 1;
via_chan_set_buffering(card, &card->ch_out, -1);
via_chan_buffer_init (card, &card->ch_out);
max_size += card->ch_out.page_number << PAGE_SHIFT;
}
start = vma->vm_start;
offset = (vma->vm_pgoff << PAGE_SHIFT);
size = vma->vm_end - vma->vm_start;
/* some basic size/offset sanity checks */
if (size > max_size)
goto out;
if (offset > max_size - size)
goto out;
rc = via_syscall_down (card, nonblock);
if (rc) goto out;
vma->vm_ops = &via_mm_ops;
vma->vm_private_data = card;
#ifdef VM_RESERVED
vma->vm_flags |= VM_RESERVED;
#endif
if (rd)
card->ch_in.is_mapped = 1;
if (wr)
card->ch_out.is_mapped = 1;
mutex_unlock(&card->syscall_mutex);
rc = 0;
out:
DPRINTK ("EXIT, returning %d\n", rc);
return rc;
}
static ssize_t via_dsp_do_read (struct via_info *card,
char __user *userbuf, size_t count,
int nonblock)
{
DECLARE_WAITQUEUE(wait, current);
const char __user *orig_userbuf = userbuf;
struct via_channel *chan = &card->ch_in;
size_t size;
int n, tmp;
ssize_t ret = 0;
/* if SGD has not yet been started, start it */
via_chan_maybe_start (chan);
handle_one_block:
/* just to be a nice neighbor */
/* Thomas Sailer:
* But also to ourselves, release semaphore if we do so */
if (need_resched()) {
mutex_unlock(&card->syscall_mutex);
schedule ();
ret = via_syscall_down (card, nonblock);
if (ret)
goto out;
}
/* grab current channel software pointer. In the case of
* recording, this is pointing to the next buffer that
* will receive data from the audio hardware.
*/
n = chan->sw_ptr;
/* n_frags represents the number of fragments waiting
* to be copied to userland. sleep until at least
* one buffer has been read from the audio hardware.
*/
add_wait_queue(&chan->wait, &wait);
for (;;) {
__set_current_state(TASK_INTERRUPTIBLE);
tmp = atomic_read (&chan->n_frags);
assert (tmp >= 0);
assert (tmp <= chan->frag_number);
if (tmp)
break;
if (nonblock || !chan->is_active) {
ret = -EAGAIN;
break;
}
mutex_unlock(&card->syscall_mutex);
DPRINTK ("Sleeping on block %d\n", n);
schedule();
ret = via_syscall_down (card, nonblock);
if (ret)
break;
if (signal_pending (current)) {
ret = -ERESTARTSYS;
break;
}
}
set_current_state(TASK_RUNNING);
remove_wait_queue(&chan->wait, &wait);
if (ret)
goto out;
/* Now that we have a buffer we can read from, send
* as much as sample data possible to userspace.
*/
while ((count > 0) && (chan->slop_len < chan->frag_size)) {
size_t slop_left = chan->frag_size - chan->slop_len;
void *base = chan->pgtbl[n / (PAGE_SIZE / chan->frag_size)].cpuaddr;
unsigned ofs = (n % (PAGE_SIZE / chan->frag_size)) * chan->frag_size;
size = (count < slop_left) ? count : slop_left;
if (copy_to_user (userbuf,
base + ofs + chan->slop_len,
size)) {
ret = -EFAULT;
goto out;
}
count -= size;
chan->slop_len += size;
userbuf += size;
}
/* If we didn't copy the buffer completely to userspace,
* stop now.
*/
if (chan->slop_len < chan->frag_size)
goto out;
/*
* If we get to this point, we copied one buffer completely
* to userspace, give the buffer back to the hardware.
*/
/* advance channel software pointer to point to
* the next buffer from which we will copy
*/
if (chan->sw_ptr == (chan->frag_number - 1))
chan->sw_ptr = 0;
else
chan->sw_ptr++;
/* mark one less buffer waiting to be processed */
assert (atomic_read (&chan->n_frags) > 0);
atomic_dec (&chan->n_frags);
/* we are at a block boundary, there is no fragment data */
chan->slop_len = 0;
DPRINTK ("Flushed block %u, sw_ptr now %u, n_frags now %d\n",
n, chan->sw_ptr, atomic_read (&chan->n_frags));
DPRINTK ("regs==%02X %02X %02X %08X %08X %08X %08X\n",
inb (card->baseaddr + 0x00),
inb (card->baseaddr + 0x01),
inb (card->baseaddr + 0x02),
inl (card->baseaddr + 0x04),
inl (card->baseaddr + 0x0C),
inl (card->baseaddr + 0x80),
inl (card->baseaddr + 0x84));
if (count > 0)
goto handle_one_block;
out:
return (userbuf != orig_userbuf) ? (userbuf - orig_userbuf) : ret;
}
static ssize_t via_dsp_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos)
{
struct via_info *card;
int nonblock = (file->f_flags & O_NONBLOCK);
int rc;
DPRINTK ("ENTER, file=%p, buffer=%p, count=%u, ppos=%lu\n",
file, buffer, count, ppos ? ((unsigned long)*ppos) : 0);
assert (file != NULL);
card = file->private_data;
assert (card != NULL);
rc = via_syscall_down (card, nonblock);
if (rc) goto out;
if (card->ch_in.is_mapped) {
rc = -ENXIO;
goto out_up;
}
via_chan_set_buffering(card, &card->ch_in, -1);
rc = via_chan_buffer_init (card, &card->ch_in);
if (rc)
goto out_up;
rc = via_dsp_do_read (card, buffer, count, nonblock);
out_up:
mutex_unlock(&card->syscall_mutex);
out:
DPRINTK ("EXIT, returning %ld\n",(long) rc);
return rc;
}
static ssize_t via_dsp_do_write (struct via_info *card,
const char __user *userbuf, size_t count,
int nonblock)
{
DECLARE_WAITQUEUE(wait, current);
const char __user *orig_userbuf = userbuf;
struct via_channel *chan = &card->ch_out;
volatile struct via_sgd_table *sgtable = chan->sgtable;
size_t size;
int n, tmp;
ssize_t ret = 0;
handle_one_block:
/* just to be a nice neighbor */
/* Thomas Sailer:
* But also to ourselves, release semaphore if we do so */
if (need_resched()) {
mutex_unlock(&card->syscall_mutex);
schedule ();
ret = via_syscall_down (card, nonblock);
if (ret)
goto out;
}
/* grab current channel fragment pointer. In the case of
* playback, this is pointing to the next fragment that
* should receive data from userland.
*/
n = chan->sw_ptr;
/* n_frags represents the number of fragments remaining
* to be filled by userspace. Sleep until
* at least one fragment is available for our use.
*/
add_wait_queue(&chan->wait, &wait);
for (;;) {
__set_current_state(TASK_INTERRUPTIBLE);
tmp = atomic_read (&chan->n_frags);
assert (tmp >= 0);
assert (tmp <= chan->frag_number);
if (tmp)
break;
if (nonblock || !chan->is_active) {
ret = -EAGAIN;
break;
}
mutex_unlock(&card->syscall_mutex);
DPRINTK ("Sleeping on page %d, tmp==%d, ir==%d\n", n, tmp, chan->is_record);
schedule();
ret = via_syscall_down (card, nonblock);
if (ret)
break;
if (signal_pending (current)) {
ret = -ERESTARTSYS;
break;
}
}
set_current_state(TASK_RUNNING);
remove_wait_queue(&chan->wait, &wait);
if (ret)
goto out;
/* Now that we have at least one fragment we can write to, fill the buffer
* as much as possible with data from userspace.
*/
while ((count > 0) && (chan->slop_len < chan->frag_size)) {
size_t slop_left = chan->frag_size - chan->slop_len;
size = (count < slop_left) ? count : slop_left;
if (copy_from_user (chan->pgtbl[n / (PAGE_SIZE / chan->frag_size)].cpuaddr + (n % (PAGE_SIZE / chan->frag_size)) * chan->frag_size + chan->slop_len,
userbuf, size)) {
ret = -EFAULT;
goto out;
}
count -= size;
chan->slop_len += size;
userbuf += size;
}
/* If we didn't fill up the buffer with data, stop now.
* Put a 'stop' marker in the DMA table too, to tell the
* audio hardware to stop if it gets here.
*/
if (chan->slop_len < chan->frag_size) {
sgtable[n].count = cpu_to_le32 (chan->slop_len | VIA_EOL | VIA_STOP);
goto out;
}
/*
* If we get to this point, we have filled a buffer with
* audio data, flush the buffer to audio hardware.
*/
/* Record the true size for the audio hardware to notice */
if (n == (chan->frag_number - 1))
sgtable[n].count = cpu_to_le32 (chan->frag_size | VIA_EOL);
else
sgtable[n].count = cpu_to_le32 (chan->frag_size | VIA_FLAG);
/* advance channel software pointer to point to
* the next buffer we will fill with data
*/
if (chan->sw_ptr == (chan->frag_number - 1))
chan->sw_ptr = 0;
else
chan->sw_ptr++;
/* mark one less buffer as being available for userspace consumption */
assert (atomic_read (&chan->n_frags) > 0);
atomic_dec (&chan->n_frags);
/* we are at a block boundary, there is no fragment data */
chan->slop_len = 0;
/* if SGD has not yet been started, start it */
via_chan_maybe_start (chan);
DPRINTK ("Flushed block %u, sw_ptr now %u, n_frags now %d\n",
n, chan->sw_ptr, atomic_read (&chan->n_frags));
DPRINTK ("regs==S=%02X C=%02X TP=%02X BP=%08X RT=%08X SG=%08X CC=%08X SS=%08X\n",
inb (card->baseaddr + 0x00),
inb (card->baseaddr + 0x01),
inb (card->baseaddr + 0x02),
inl (card->baseaddr + 0x04),
inl (card->baseaddr + 0x08),
inl (card->baseaddr + 0x0C),
inl (card->baseaddr + 0x80),
inl (card->baseaddr + 0x84));
if (count > 0)
goto handle_one_block;
out:
if (userbuf - orig_userbuf)
return userbuf - orig_userbuf;
else
return ret;
}
static ssize_t via_dsp_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos)
{
struct via_info *card;
ssize_t rc;
int nonblock = (file->f_flags & O_NONBLOCK);
DPRINTK ("ENTER, file=%p, buffer=%p, count=%u, ppos=%lu\n",
file, buffer, count, ppos ? ((unsigned long)*ppos) : 0);
assert (file != NULL);
card = file->private_data;
assert (card != NULL);
rc = via_syscall_down (card, nonblock);
if (rc) goto out;
if (card->ch_out.is_mapped) {
rc = -ENXIO;
goto out_up;
}
via_chan_set_buffering(card, &card->ch_out, -1);
rc = via_chan_buffer_init (card, &card->ch_out);
if (rc)
goto out_up;
rc = via_dsp_do_write (card, buffer, count, nonblock);
out_up:
mutex_unlock(&card->syscall_mutex);
out:
DPRINTK ("EXIT, returning %ld\n",(long) rc);
return rc;
}
static unsigned int via_dsp_poll(struct file *file, struct poll_table_struct *wait)
{
struct via_info *card;
struct via_channel *chan;
unsigned int mask = 0;
DPRINTK ("ENTER\n");
assert (file != NULL);
card = file->private_data;
assert (card != NULL);
if (file->f_mode & FMODE_READ) {
chan = &card->ch_in;
if (sg_active (chan->iobase))
poll_wait(file, &chan->wait, wait);
if (atomic_read (&chan->n_frags) > 0)
mask |= POLLIN | POLLRDNORM;
}
if (file->f_mode & FMODE_WRITE) {
chan = &card->ch_out;
if (sg_active (chan->iobase))
poll_wait(file, &chan->wait, wait);
if (atomic_read (&chan->n_frags) > 0)
mask |= POLLOUT | POLLWRNORM;
}
DPRINTK ("EXIT, returning %u\n", mask);
return mask;
}
/**
* via_dsp_drain_playback - sleep until all playback samples are flushed
* @card: Private info for specified board
* @chan: Channel to drain
* @nonblock: boolean, non-zero if O_NONBLOCK is set
*
* Sleeps until all playback has been flushed to the audio
* hardware.
*
* Locking: inside card->syscall_mutex
*/
static int via_dsp_drain_playback (struct via_info *card,
struct via_channel *chan, int nonblock)
{
DECLARE_WAITQUEUE(wait, current);
int ret = 0;
DPRINTK ("ENTER, nonblock = %d\n", nonblock);
if (chan->slop_len > 0)
via_chan_flush_frag (chan);
if (atomic_read (&chan->n_frags) == chan->frag_number)
goto out;
via_chan_maybe_start (chan);
add_wait_queue(&chan->wait, &wait);
for (;;) {
DPRINTK ("FRAGS %d FRAGNUM %d\n", atomic_read(&chan->n_frags), chan->frag_number);
__set_current_state(TASK_INTERRUPTIBLE);
if (atomic_read (&chan->n_frags) >= chan->frag_number)
break;
if (nonblock) {
DPRINTK ("EXIT, returning -EAGAIN\n");
ret = -EAGAIN;
break;
}
#ifdef VIA_DEBUG
{
u8 r40,r41,r42,r43,r44,r48;
pci_read_config_byte (card->pdev, 0x40, &r40);
pci_read_config_byte (card->pdev, 0x41, &r41);
pci_read_config_byte (card->pdev, 0x42, &r42);
pci_read_config_byte (card->pdev, 0x43, &r43);
pci_read_config_byte (card->pdev, 0x44, &r44);
pci_read_config_byte (card->pdev, 0x48, &r48);
DPRINTK ("PCI config: %02X %02X %02X %02X %02X %02X\n",
r40,r41,r42,r43,r44,r48);
DPRINTK ("regs==%02X %02X %02X %08X %08X %08X %08X\n",
inb (card->baseaddr + 0x00),
inb (card->baseaddr + 0x01),
inb (card->baseaddr + 0x02),
inl (card->baseaddr + 0x04),
inl (card->baseaddr + 0x0C),
inl (card->baseaddr + 0x80),
inl (card->baseaddr + 0x84));
}
if (!chan->is_active)
printk (KERN_ERR "sleeping but not active\n");
#endif
mutex_unlock(&card->syscall_mutex);
DPRINTK ("sleeping, nbufs=%d\n", atomic_read (&chan->n_frags));
schedule();
if ((ret = via_syscall_down (card, nonblock)))
break;
if (signal_pending (current)) {
DPRINTK ("EXIT, returning -ERESTARTSYS\n");
ret = -ERESTARTSYS;
break;
}
}
set_current_state(TASK_RUNNING);
remove_wait_queue(&chan->wait, &wait);
#ifdef VIA_DEBUG
{
u8 r40,r41,r42,r43,r44,r48;
pci_read_config_byte (card->pdev, 0x40, &r40);
pci_read_config_byte (card->pdev, 0x41, &r41);
pci_read_config_byte (card->pdev, 0x42, &r42);
pci_read_config_byte (card->pdev, 0x43, &r43);
pci_read_config_byte (card->pdev, 0x44, &r44);
pci_read_config_byte (card->pdev, 0x48, &r48);
DPRINTK ("PCI config: %02X %02X %02X %02X %02X %02X\n",
r40,r41,r42,r43,r44,r48);
DPRINTK ("regs==%02X %02X %02X %08X %08X %08X %08X\n",
inb (card->baseaddr + 0x00),
inb (card->baseaddr + 0x01),
inb (card->baseaddr + 0x02),
inl (card->baseaddr + 0x04),
inl (card->baseaddr + 0x0C),
inl (card->baseaddr + 0x80),
inl (card->baseaddr + 0x84));
DPRINTK ("final nbufs=%d\n", atomic_read (&chan->n_frags));
}
#endif
out:
DPRINTK ("EXIT, returning %d\n", ret);
return ret;
}
/**
* via_dsp_ioctl_space - get information about channel buffering
* @card: Private info for specified board
* @chan: pointer to channel-specific info
* @arg: user buffer for returned information
*
* Handles SNDCTL_DSP_GETISPACE and SNDCTL_DSP_GETOSPACE.
*
* Locking: inside card->syscall_mutex
*/
static int via_dsp_ioctl_space (struct via_info *card,
struct via_channel *chan,
void __user *arg)
{
audio_buf_info info;
via_chan_set_buffering(card, chan, -1);
info.fragstotal = chan->frag_number;
info.fragsize = chan->frag_size;
/* number of full fragments we can read/write without blocking */
info.fragments = atomic_read (&chan->n_frags);
if ((chan->slop_len % chan->frag_size > 0) && (info.fragments > 0))
info.fragments--;
/* number of bytes that can be read or written immediately
* without blocking.
*/
info.bytes = (info.fragments * chan->frag_size);
if (chan->slop_len % chan->frag_size > 0)
info.bytes += chan->frag_size - (chan->slop_len % chan->frag_size);
DPRINTK ("EXIT, returning fragstotal=%d, fragsize=%d, fragments=%d, bytes=%d\n",
info.fragstotal,
info.fragsize,
info.fragments,
info.bytes);
return copy_to_user (arg, &info, sizeof (info))?-EFAULT:0;
}
/**
* via_dsp_ioctl_ptr - get information about hardware buffer ptr
* @card: Private info for specified board
* @chan: pointer to channel-specific info
* @arg: user buffer for returned information
*
* Handles SNDCTL_DSP_GETIPTR and SNDCTL_DSP_GETOPTR.
*
* Locking: inside card->syscall_mutex
*/
static int via_dsp_ioctl_ptr (struct via_info *card,
struct via_channel *chan,
void __user *arg)
{
count_info info;
spin_lock_irq (&card->lock);
info.bytes = chan->bytes;
info.blocks = chan->n_irqs;
chan->n_irqs = 0;
spin_unlock_irq (&card->lock);
if (chan->is_active) {
unsigned long extra;
info.ptr = atomic_read (&chan->hw_ptr) * chan->frag_size;
extra = chan->frag_size - via_sg_offset(chan);
info.ptr += extra;
info.bytes += extra;
} else {
info.ptr = 0;
}
DPRINTK ("EXIT, returning bytes=%d, blocks=%d, ptr=%d\n",
info.bytes,
info.blocks,
info.ptr);
return copy_to_user (arg, &info, sizeof (info))?-EFAULT:0;
}
static int via_dsp_ioctl_trigger (struct via_channel *chan, int val)
{
int enable, do_something;
if (chan->is_record)
enable = (val & PCM_ENABLE_INPUT);
else
enable = (val & PCM_ENABLE_OUTPUT);
if (!chan->is_enabled && enable) {
do_something = 1;
} else if (chan->is_enabled && !enable) {
do_something = -1;
} else {
do_something = 0;
}
DPRINTK ("enable=%d, do_something=%d\n",
enable, do_something);
if (chan->is_active && do_something)
return -EINVAL;
if (do_something == 1) {
chan->is_enabled = 1;
via_chan_maybe_start (chan);
DPRINTK ("Triggering input\n");
}
else if (do_something == -1) {
chan->is_enabled = 0;
DPRINTK ("Setup input trigger\n");
}
return 0;
}
static int via_dsp_ioctl (struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg)
{
int rc, rd=0, wr=0, val=0;
struct via_info *card;
struct via_channel *chan;
int nonblock = (file->f_flags & O_NONBLOCK);
int __user *ip = (int __user *)arg;
void __user *p = (void __user *)arg;
assert (file != NULL);
card = file->private_data;
assert (card != NULL);
if (file->f_mode & FMODE_WRITE)
wr = 1;
if (file->f_mode & FMODE_READ)
rd = 1;
rc = via_syscall_down (card, nonblock);
if (rc)
return rc;
rc = -EINVAL;
switch (cmd) {
/* OSS API version. XXX unverified */
case OSS_GETVERSION:
DPRINTK ("ioctl OSS_GETVERSION, EXIT, returning SOUND_VERSION\n");
rc = put_user (SOUND_VERSION, ip);
break;
/* list of supported PCM data formats */
case SNDCTL_DSP_GETFMTS:
DPRINTK ("DSP_GETFMTS, EXIT, returning AFMT U8|S16_LE\n");
rc = put_user (AFMT_U8 | AFMT_S16_LE, ip);
break;
/* query or set current channel's PCM data format */
case SNDCTL_DSP_SETFMT:
if (get_user(val, ip)) {
rc = -EFAULT;
break;
}
DPRINTK ("DSP_SETFMT, val==%d\n", val);
if (val != AFMT_QUERY) {
rc = 0;
if (rd)
rc = via_chan_set_fmt (card, &card->ch_in, val);
if (rc >= 0 && wr)
rc = via_chan_set_fmt (card, &card->ch_out, val);
if (rc < 0)
break;
val = rc;
} else {
if ((rd && (card->ch_in.pcm_fmt & VIA_PCM_FMT_16BIT)) ||
(wr && (card->ch_out.pcm_fmt & VIA_PCM_FMT_16BIT)))
val = AFMT_S16_LE;
else
val = AFMT_U8;
}
DPRINTK ("SETFMT EXIT, returning %d\n", val);
rc = put_user (val, ip);
break;
/* query or set number of channels (1=mono, 2=stereo, 4/6 for multichannel) */
case SNDCTL_DSP_CHANNELS:
if (get_user(val, ip)) {
rc = -EFAULT;
break;
}
DPRINTK ("DSP_CHANNELS, val==%d\n", val);
if (val != 0) {
rc = 0;
if (rd)
rc = via_chan_set_stereo (card, &card->ch_in, val);
if (rc >= 0 && wr)
rc = via_chan_set_stereo (card, &card->ch_out, val);
if (rc < 0)
break;
val = rc;
} else {
if (rd)
val = card->ch_in.channels;
else
val = card->ch_out.channels;
}
DPRINTK ("CHANNELS EXIT, returning %d\n", val);
rc = put_user (val, ip);
break;
/* enable (val is not zero) or disable (val == 0) stereo */
case SNDCTL_DSP_STEREO:
if (get_user(val, ip)) {
rc = -EFAULT;
break;
}
DPRINTK ("DSP_STEREO, val==%d\n", val);
rc = 0;
if (rd)
rc = via_chan_set_stereo (card, &card->ch_in, val ? 2 : 1);
if (rc >= 0 && wr)
rc = via_chan_set_stereo (card, &card->ch_out, val ? 2 : 1);
if (rc < 0)
break;
val = rc - 1;
DPRINTK ("STEREO EXIT, returning %d\n", val);
rc = put_user(val, ip);
break;
/* query or set sampling rate */
case SNDCTL_DSP_SPEED:
if (get_user(val, ip)) {
rc = -EFAULT;
break;
}
DPRINTK ("DSP_SPEED, val==%d\n", val);
if (val < 0) {
rc = -EINVAL;
break;
}
if (val > 0) {
rc = 0;
if (rd)
rc = via_chan_set_speed (card, &card->ch_in, val);
if (rc >= 0 && wr)
rc = via_chan_set_speed (card, &card->ch_out, val);
if (rc < 0)
break;
val = rc;
} else {
if (rd)
val = card->ch_in.rate;
else if (wr)
val = card->ch_out.rate;
else
val = 0;
}
DPRINTK ("SPEED EXIT, returning %d\n", val);
rc = put_user (val, ip);
break;
/* wait until all buffers have been played, and then stop device */
case SNDCTL_DSP_SYNC:
DPRINTK ("DSP_SYNC\n");
rc = 0;
if (wr) {
DPRINTK ("SYNC EXIT (after calling via_dsp_drain_playback)\n");
rc = via_dsp_drain_playback (card, &card->ch_out, nonblock);
}
break;
/* stop recording/playback immediately */
case SNDCTL_DSP_RESET:
DPRINTK ("DSP_RESET\n");
if (rd) {
via_chan_clear (card, &card->ch_in);
card->ch_in.frag_number = 0;
card->ch_in.frag_size = 0;
atomic_set(&card->ch_in.n_frags, 0);
}
if (wr) {
via_chan_clear (card, &card->ch_out);
card->ch_out.frag_number = 0;
card->ch_out.frag_size = 0;
atomic_set(&card->ch_out.n_frags, 0);
}
rc = 0;
break;
case SNDCTL_DSP_NONBLOCK:
file->f_flags |= O_NONBLOCK;
rc = 0;
break;
/* obtain bitmask of device capabilities, such as mmap, full duplex, etc. */
case SNDCTL_DSP_GETCAPS:
DPRINTK ("DSP_GETCAPS\n");
rc = put_user(VIA_DSP_CAP, ip);
break;
/* obtain buffer fragment size */
case SNDCTL_DSP_GETBLKSIZE:
DPRINTK ("DSP_GETBLKSIZE\n");
if (rd) {
via_chan_set_buffering(card, &card->ch_in, -1);
rc = put_user(card->ch_in.frag_size, ip);
} else if (wr) {
via_chan_set_buffering(card, &card->ch_out, -1);
rc = put_user(card->ch_out.frag_size, ip);
}
break;
/* obtain information about input buffering */
case SNDCTL_DSP_GETISPACE:
DPRINTK ("DSP_GETISPACE\n");
if (rd)
rc = via_dsp_ioctl_space (card, &card->ch_in, p);
break;
/* obtain information about output buffering */
case SNDCTL_DSP_GETOSPACE:
DPRINTK ("DSP_GETOSPACE\n");
if (wr)
rc = via_dsp_ioctl_space (card, &card->ch_out, p);
break;
/* obtain information about input hardware pointer */
case SNDCTL_DSP_GETIPTR:
DPRINTK ("DSP_GETIPTR\n");
if (rd)
rc = via_dsp_ioctl_ptr (card, &card->ch_in, p);
break;
/* obtain information about output hardware pointer */
case SNDCTL_DSP_GETOPTR:
DPRINTK ("DSP_GETOPTR\n");
if (wr)
rc = via_dsp_ioctl_ptr (card, &card->ch_out, p);
break;
/* return number of bytes remaining to be played by DMA engine */
case SNDCTL_DSP_GETODELAY:
{
DPRINTK ("DSP_GETODELAY\n");
chan = &card->ch_out;
if (!wr)
break;
if (chan->is_active) {
val = chan->frag_number - atomic_read (&chan->n_frags);
assert(val >= 0);
if (val > 0) {
val *= chan->frag_size;
val -= chan->frag_size - via_sg_offset(chan);
}
val += chan->slop_len % chan->frag_size;
} else
val = 0;
assert (val <= (chan->frag_size * chan->frag_number));
DPRINTK ("GETODELAY EXIT, val = %d bytes\n", val);
rc = put_user (val, ip);
break;
}
/* handle the quick-start of a channel,
* or the notification that a quick-start will
* occur in the future
*/
case SNDCTL_DSP_SETTRIGGER:
if (get_user(val, ip)) {
rc = -EFAULT;
break;
}
DPRINTK ("DSP_SETTRIGGER, rd=%d, wr=%d, act=%d/%d, en=%d/%d\n",
rd, wr, card->ch_in.is_active, card->ch_out.is_active,
card->ch_in.is_enabled, card->ch_out.is_enabled);
rc = 0;
if (rd)
rc = via_dsp_ioctl_trigger (&card->ch_in, val);
if (!rc && wr)
rc = via_dsp_ioctl_trigger (&card->ch_out, val);
break;
case SNDCTL_DSP_GETTRIGGER:
val = 0;
if ((file->f_mode & FMODE_READ) && card->ch_in.is_enabled)
val |= PCM_ENABLE_INPUT;
if ((file->f_mode & FMODE_WRITE) && card->ch_out.is_enabled)
val |= PCM_ENABLE_OUTPUT;
rc = put_user(val, ip);
break;
/* Enable full duplex. Since we do this as soon as we are opened
* with O_RDWR, this is mainly a no-op that always returns success.
*/
case SNDCTL_DSP_SETDUPLEX:
DPRINTK ("DSP_SETDUPLEX\n");
if (!rd || !wr)
break;
rc = 0;
break;
/* set fragment size. implemented as a successful no-op for now */
case SNDCTL_DSP_SETFRAGMENT:
if (get_user(val, ip)) {
rc = -EFAULT;
break;
}
DPRINTK ("DSP_SETFRAGMENT, val==%d\n", val);
if (rd)
rc = via_chan_set_buffering(card, &card->ch_in, val);
if (wr)
rc = via_chan_set_buffering(card, &card->ch_out, val);
DPRINTK ("SNDCTL_DSP_SETFRAGMENT (fragshift==0x%04X (%d), maxfrags==0x%04X (%d))\n",
val & 0xFFFF,
val & 0xFFFF,
(val >> 16) & 0xFFFF,
(val >> 16) & 0xFFFF);
rc = 0;
break;
/* inform device of an upcoming pause in input (or output). */
case SNDCTL_DSP_POST:
DPRINTK ("DSP_POST\n");
if (wr) {
if (card->ch_out.slop_len > 0)
via_chan_flush_frag (&card->ch_out);
via_chan_maybe_start (&card->ch_out);
}
rc = 0;
break;
/* not implemented */
default:
DPRINTK ("unhandled ioctl, cmd==%u, arg==%p\n",
cmd, p);
break;
}
mutex_unlock(&card->syscall_mutex);
DPRINTK ("EXIT, returning %d\n", rc);
return rc;
}
static int via_dsp_open (struct inode *inode, struct file *file)
{
int minor = iminor(inode);
struct via_info *card;
struct pci_dev *pdev = NULL;
struct via_channel *chan;
struct pci_driver *drvr;
int nonblock = (file->f_flags & O_NONBLOCK);
DPRINTK ("ENTER, minor=%d, file->f_mode=0x%x\n", minor, file->f_mode);
if (!(file->f_mode & (FMODE_READ | FMODE_WRITE))) {
DPRINTK ("EXIT, returning -EINVAL\n");
return -EINVAL;
}
card = NULL;
while ((pdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, pdev)) != NULL) {
drvr = pci_dev_driver (pdev);
if (drvr == &via_driver) {
assert (pci_get_drvdata (pdev) != NULL);
card = pci_get_drvdata (pdev);
DPRINTK ("dev_dsp = %d, minor = %d, assn = %d\n",
card->dev_dsp, minor,
(card->dev_dsp ^ minor) & ~0xf);
if (((card->dev_dsp ^ minor) & ~0xf) == 0)
goto match;
}
}
DPRINTK ("no matching %s found\n", card ? "minor" : "driver");
return -ENODEV;
match:
pci_dev_put(pdev);
if (nonblock) {
if (!mutex_trylock(&card->open_mutex)) {
DPRINTK ("EXIT, returning -EAGAIN\n");
return -EAGAIN;
}
} else {
if (mutex_lock_interruptible(&card->open_mutex)) {
DPRINTK ("EXIT, returning -ERESTARTSYS\n");
return -ERESTARTSYS;
}
}
file->private_data = card;
DPRINTK ("file->f_mode == 0x%x\n", file->f_mode);
/* handle input from analog source */
if (file->f_mode & FMODE_READ) {
chan = &card->ch_in;
via_chan_init (card, chan);
/* why is this forced to 16-bit stereo in all drivers? */
chan->pcm_fmt = VIA_PCM_FMT_16BIT | VIA_PCM_FMT_STEREO;
chan->channels = 2;
// TO DO - use FIFO: via_capture_fifo(card, 1);
via_chan_pcm_fmt (chan, 0);
via_set_rate (card->ac97, chan, 44100);
}
/* handle output to analog source */
if (file->f_mode & FMODE_WRITE) {
chan = &card->ch_out;
via_chan_init (card, chan);
if (file->f_mode & FMODE_READ) {
/* if in duplex mode make the recording and playback channels
have the same settings */
chan->pcm_fmt = VIA_PCM_FMT_16BIT | VIA_PCM_FMT_STEREO;
chan->channels = 2;
via_chan_pcm_fmt (chan, 0);
via_set_rate (card->ac97, chan, 44100);
} else {
if ((minor & 0xf) == SND_DEV_DSP16) {
chan->pcm_fmt = VIA_PCM_FMT_16BIT;
via_chan_pcm_fmt (chan, 0);
via_set_rate (card->ac97, chan, 44100);
} else {
via_chan_pcm_fmt (chan, 1);
via_set_rate (card->ac97, chan, 8000);
}
}
}
DPRINTK ("EXIT, returning 0\n");
return nonseekable_open(inode, file);
}
static int via_dsp_release(struct inode *inode, struct file *file)
{
struct via_info *card;
int nonblock = (file->f_flags & O_NONBLOCK);
int rc;
DPRINTK ("ENTER\n");
assert (file != NULL);
card = file->private_data;
assert (card != NULL);
rc = via_syscall_down (card, nonblock);
if (rc) {
DPRINTK ("EXIT (syscall_down error), rc=%d\n", rc);
return rc;
}
if (file->f_mode & FMODE_WRITE) {
rc = via_dsp_drain_playback (card, &card->ch_out, nonblock);
if (rc && rc != -ERESTARTSYS) /* Nobody needs to know about ^C */
printk (KERN_DEBUG "via_audio: ignoring drain playback error %d\n", rc);
via_chan_free (card, &card->ch_out);
via_chan_buffer_free(card, &card->ch_out);
}
if (file->f_mode & FMODE_READ) {
via_chan_free (card, &card->ch_in);
via_chan_buffer_free (card, &card->ch_in);
}
mutex_unlock(&card->syscall_mutex);
mutex_unlock(&card->open_mutex);
DPRINTK ("EXIT, returning 0\n");
return 0;
}
/****************************************************************
*
* Chip setup and kernel registration
*
*
*/
static int __devinit via_init_one (struct pci_dev *pdev, const struct pci_device_id *id)
{
#ifdef CONFIG_MIDI_VIA82CXXX
u8 r42;
#endif
int rc;
struct via_info *card;
static int printed_version;
DPRINTK ("ENTER\n");
if (printed_version++ == 0)
printk (KERN_INFO "Via 686a/8233/8235 audio driver " VIA_VERSION "\n");
rc = pci_enable_device (pdev);
if (rc)
goto err_out;
rc = pci_request_regions (pdev, "via82cxxx_audio");
if (rc)
goto err_out_disable;
rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
if (rc)
goto err_out_res;
rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
if (rc)
goto err_out_res;
card = kmalloc (sizeof (*card), GFP_KERNEL);
if (!card) {
printk (KERN_ERR PFX "out of memory, aborting\n");
rc = -ENOMEM;
goto err_out_res;
}
pci_set_drvdata (pdev, card);
memset (card, 0, sizeof (*card));
card->pdev = pdev;
card->baseaddr = pci_resource_start (pdev, 0);
card->card_num = via_num_cards++;
spin_lock_init (&card->lock);
spin_lock_init (&card->ac97_lock);
mutex_init(&card->syscall_mutex);
mutex_init(&card->open_mutex);
/* we must init these now, in case the intr handler needs them */
via_chan_init_defaults (card, &card->ch_out);
via_chan_init_defaults (card, &card->ch_in);
via_chan_init_defaults (card, &card->ch_fm);
/* if BAR 2 is present, chip is Rev H or later,
* which means it has a few extra features */
if (pci_resource_start (pdev, 2) > 0)
card->rev_h = 1;
/* Overkill for now, but more flexible done right */
card->intmask = id->driver_data;
card->legacy = !card->intmask;
card->sixchannel = id->driver_data;
if(card->sixchannel)
printk(KERN_INFO PFX "Six channel audio available\n");
if (pdev->irq < 1) {
printk (KERN_ERR PFX "invalid PCI IRQ %d, aborting\n", pdev->irq);
rc = -ENODEV;
goto err_out_kfree;
}
if (!(pci_resource_flags (pdev, 0) & IORESOURCE_IO)) {
printk (KERN_ERR PFX "unable to locate I/O resources, aborting\n");
rc = -ENODEV;
goto err_out_kfree;
}
pci_set_master(pdev);
/*
* init AC97 mixer and codec
*/
rc = via_ac97_init (card);
if (rc) {
printk (KERN_ERR PFX "AC97 init failed, aborting\n");
goto err_out_kfree;
}
/*
* init DSP device
*/
rc = via_dsp_init (card);
if (rc) {
printk (KERN_ERR PFX "DSP device init failed, aborting\n");
goto err_out_have_mixer;
}
/*
* init and turn on interrupts, as the last thing we do
*/
rc = via_interrupt_init (card);
if (rc) {
printk (KERN_ERR PFX "interrupt init failed, aborting\n");
goto err_out_have_dsp;
}
printk (KERN_INFO PFX "board #%d at 0x%04lX, IRQ %d\n",
card->card_num + 1, card->baseaddr, pdev->irq);
#ifdef CONFIG_MIDI_VIA82CXXX
/* Disable by default */
card->midi_info.io_base = 0;
if(card->legacy)
{
pci_read_config_byte (pdev, 0x42, &r42);
/* Disable MIDI interrupt */
pci_write_config_byte (pdev, 0x42, r42 | VIA_CR42_MIDI_IRQMASK);
if (r42 & VIA_CR42_MIDI_ENABLE)
{
if (r42 & VIA_CR42_MIDI_PNP) /* Address selected by iobase 2 - not tested */
card->midi_info.io_base = pci_resource_start (pdev, 2);
else /* Address selected by byte 0x43 */
{
u8 r43;
pci_read_config_byte (pdev, 0x43, &r43);
card->midi_info.io_base = 0x300 + ((r43 & 0x0c) << 2);
}
card->midi_info.irq = -pdev->irq;
if (probe_uart401(& card->midi_info, THIS_MODULE))
{
card->midi_devc=midi_devs[card->midi_info.slots[4]]->devc;
pci_write_config_byte(pdev, 0x42, r42 & ~VIA_CR42_MIDI_IRQMASK);
printk("Enabled Via MIDI\n");
}
}
}
#endif
DPRINTK ("EXIT, returning 0\n");
return 0;
err_out_have_dsp:
via_dsp_cleanup (card);
err_out_have_mixer:
via_ac97_cleanup (card);
err_out_kfree:
#ifndef VIA_NDEBUG
memset (card, OSS_POISON_FREE, sizeof (*card)); /* poison memory */
#endif
kfree (card);
err_out_res:
pci_release_regions (pdev);
err_out_disable:
pci_disable_device (pdev);
err_out:
pci_set_drvdata (pdev, NULL);
DPRINTK ("EXIT - returning %d\n", rc);
return rc;
}
static void __devexit via_remove_one (struct pci_dev *pdev)
{
struct via_info *card;
DPRINTK ("ENTER\n");
assert (pdev != NULL);
card = pci_get_drvdata (pdev);
assert (card != NULL);
#ifdef CONFIG_MIDI_VIA82CXXX
if (card->midi_info.io_base)
unload_uart401(&card->midi_info);
#endif
free_irq (card->pdev->irq, card);
via_dsp_cleanup (card);
via_ac97_cleanup (card);
#ifndef VIA_NDEBUG
memset (card, OSS_POISON_FREE, sizeof (*card)); /* poison memory */
#endif
kfree (card);
pci_set_drvdata (pdev, NULL);
pci_release_regions (pdev);
pci_disable_device (pdev);
pci_set_power_state (pdev, 3); /* ...zzzzzz */
DPRINTK ("EXIT\n");
return;
}
/****************************************************************
*
* Driver initialization and cleanup
*
*
*/
static int __init init_via82cxxx_audio(void)
{
int rc;
DPRINTK ("ENTER\n");
rc = pci_register_driver (&via_driver);
if (rc) {
DPRINTK ("EXIT, returning %d\n", rc);
return rc;
}
DPRINTK ("EXIT, returning 0\n");
return 0;
}
static void __exit cleanup_via82cxxx_audio(void)
{
DPRINTK ("ENTER\n");
pci_unregister_driver (&via_driver);
DPRINTK ("EXIT\n");
}
module_init(init_via82cxxx_audio);
module_exit(cleanup_via82cxxx_audio);
MODULE_AUTHOR("Jeff Garzik");
MODULE_DESCRIPTION("DSP audio and mixer driver for Via 82Cxxx audio devices");
MODULE_LICENSE("GPL");
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册