# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. """ Configurations to train/finetune quantized classification models """ import megengine.data.transform as T class ShufflenetConfig: BATCH_SIZE = 128 LEARNING_RATE = 0.0625 MOMENTUM = 0.9 WEIGHT_DECAY = lambda self, n, p: \ 4e-5 if n.find("weight") >= 0 and len(p.shape) > 1 else 0 EPOCHS = 240 SCHEDULER = "Linear" COLOR_JITTOR = T.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4) class ResnetConfig: BATCH_SIZE = 32 LEARNING_RATE = 0.0125 MOMENTUM = 0.9 WEIGHT_DECAY = 1e-4 EPOCHS = 90 SCHEDULER = "Multistep" SCHEDULER_STEPS = [30, 60, 80] SCHEDULER_GAMMA = 0.1 COLOR_JITTOR = T.PseudoTransform() # disable colorjittor def get_config(arch: str): if "resne" in arch: # both resnet and resnext return ResnetConfig() elif "shufflenet" in arch or "mobilenet" in arch: return ShufflenetConfig() else: raise ValueError("config for {} not exists".format(arch)) class ShufflenetFinetuneConfig(ShufflenetConfig): BATCH_SIZE = 128 // 2 LEARNING_RATE = 0.03125 EPOCHS = 120 class ResnetFinetuneConfig(ResnetConfig): BATCH_SIZE = 32 LEARNING_RATE = 0.000125 EPOCHS = 12 SCHEDULER = "Multistep" SCHEDULER_STEPS = [6,] SCHEDULER_GAMMA = 0.1 def get_finetune_config(arch: str): if "resne" in arch: # both resnet and resnext return ResnetFinetuneConfig() elif "shufflenet" in arch or "mobilenet" in arch: return ShufflenetFinetuneConfig() else: raise ValueError("config for {} not exists".format(arch))