# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import argparse import importlib import json import os import sys from multiprocessing import Process, Queue from tqdm import tqdm import numpy as np import megengine as mge from megengine import jit from megengine.data import DataLoader, SequentialSampler from official.vision.detection.tools.data_mapper import data_mapper from official.vision.detection.tools.utils import DetEvaluator logger = mge.get_logger(__name__) def make_parser(): parser = argparse.ArgumentParser() parser.add_argument( "-f", "--file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-w", "--weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-n", "--ngpus", default=1, type=int, help="total number of gpus for testing", ) parser.add_argument( "-d", "--dataset_dir", default="/data/datasets", type=str, ) parser.add_argument("-se", "--start_epoch", default=-1, type=int) parser.add_argument("-ee", "--end_epoch", default=-1, type=int) return parser def main(): # pylint: disable=import-outside-toplevel from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval parser = make_parser() args = parser.parse_args() sys.path.insert(0, os.path.dirname(args.file)) current_network = importlib.import_module(os.path.basename(args.file).split(".")[0]) cfg = current_network.Cfg() if args.weight_file: args.start_epoch = args.end_epoch = -1 else: if args.start_epoch == -1: args.start_epoch = cfg.max_epoch - 1 if args.end_epoch == -1: args.end_epoch = args.start_epoch assert 0 <= args.start_epoch <= args.end_epoch < cfg.max_epoch for epoch_num in range(args.start_epoch, args.end_epoch + 1): if args.weight_file: model_file = args.weight_file else: model_file = "log-of-{}/epoch_{}.pkl".format( os.path.basename(args.file).split(".")[0], epoch_num ) logger.info("Load Model : %s completed", model_file) results_list = list() result_queue = Queue(2000) procs = [] for i in range(args.ngpus): proc = Process( target=worker, args=( current_network, model_file, args.dataset_dir, i, args.ngpus, result_queue, ), ) proc.start() procs.append(proc) num_imgs = dict(coco=5000, objects365=30000) for _ in tqdm(range(num_imgs[cfg.test_dataset["name"]])): results_list.append(result_queue.get()) for p in procs: p.join() all_results = DetEvaluator.format(results_list, cfg) json_path = "log-of-{}/epoch_{}.json".format( os.path.basename(args.file).split(".")[0], epoch_num ) all_results = json.dumps(all_results) with open(json_path, "w") as fo: fo.write(all_results) logger.info("Save to %s finished, start evaluation!", json_path) eval_gt = COCO( os.path.join( args.dataset_dir, cfg.test_dataset["name"], cfg.test_dataset["ann_file"] ) ) eval_dt = eval_gt.loadRes(json_path) cocoEval = COCOeval(eval_gt, eval_dt, iouType="bbox") cocoEval.evaluate() cocoEval.accumulate() cocoEval.summarize() metrics = [ "AP", "AP@0.5", "AP@0.75", "APs", "APm", "APl", "AR@1", "AR@10", "AR@100", "ARs", "ARm", "ARl", ] logger.info("mmAP".center(32, "-")) for i, m in enumerate(metrics): logger.info("|\t%s\t|\t%.03f\t|", m, cocoEval.stats[i]) logger.info("-" * 32) def worker( current_network, model_file, data_dir, worker_id, total_worker, result_queue, ): """ :param net_file: network description file :param model_file: file of dump weights :param data_dir: the dataset directory :param worker_id: the index of the worker :param total_worker: number of gpu for evaluation :param result_queue: processing queue """ os.environ["CUDA_VISIBLE_DEVICES"] = str(worker_id) @jit.trace(symbolic=True) def val_func(): pred = model(model.inputs) return pred cfg = current_network.Cfg() cfg.backbone_pretrained = False model = current_network.Net(cfg, batch_size=1) model.eval() evaluator = DetEvaluator(model) state_dict = mge.load(model_file) if "state_dict" in state_dict: state_dict = state_dict["state_dict"] model.load_state_dict(state_dict) loader = build_dataloader(worker_id, total_worker, data_dir, model.cfg) for data_dict in loader: data, im_info = DetEvaluator.process_inputs( data_dict[0][0], model.cfg.test_image_short_size, model.cfg.test_image_max_size, ) model.inputs["im_info"].set_value(im_info) model.inputs["image"].set_value(data.astype(np.float32)) pred_res = evaluator.predict(val_func) result_queue.put_nowait( { "det_res": pred_res, "image_id": int(data_dict[1][2][0].split(".")[0]), } ) def build_dataloader(rank, world_size, data_dir, cfg): val_dataset = data_mapper[cfg.test_dataset["name"]]( os.path.join(data_dir, cfg.test_dataset["name"], cfg.test_dataset["root"]), os.path.join(data_dir, cfg.test_dataset["name"], cfg.test_dataset["ann_file"]), order=["image", "info"], ) val_sampler = SequentialSampler(val_dataset, 1, world_size=world_size, rank=rank) val_dataloader = DataLoader(val_dataset, sampler=val_sampler, num_workers=2) return val_dataloader if __name__ == "__main__": main()