# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine as mge import megengine.functional as F import numpy as np from megengine.core import Tensor def get_padded_array_np( array: np.ndarray, multiple_number: int = 32, pad_value: float = 0 ) -> np.ndarray: """ pad the nd-array to multiple stride of th e Args: array (np.ndarray): the array with the shape of [batch, channel, height, width] multiple_number (int): make the height and width can be divided by multiple_number pad_value (int): the value to be padded Returns: padded_array (np.ndarray) """ batch, chl, t_height, t_width = array.shape padded_height = ( (t_height + multiple_number - 1) // multiple_number * multiple_number ) padded_width = (t_width + multiple_number - 1) // multiple_number * multiple_number padded_array = ( np.ones([batch, chl, padded_height, padded_width], dtype=np.float32) * pad_value ) ndim = array.ndim if ndim == 4: padded_array[:, :, :t_height, :t_width] = array elif ndim == 3: padded_array[:, :t_height, :t_width] = array else: raise Exception("Not supported tensor dim: %d" % ndim) return padded_array def get_padded_tensor( array: Tensor, multiple_number: int = 32, pad_value: float = 0 ) -> Tensor: """ pad the nd-array to multiple stride of th e Args: array (Tensor): the tensor with the shape of [batch, channel, height, width] multiple_number (int): make the height and width can be divided by multiple_number pad_value (int): the value to be padded Returns: padded_array (Tensor) """ batch, chl, t_height, t_width = array.shape padded_height = ( (t_height + multiple_number - 1) // multiple_number * multiple_number ) padded_width = (t_width + multiple_number - 1) // multiple_number * multiple_number padded_array = ( mge.ones( F.concat([batch, chl, padded_height, padded_width], axis=0), dtype=np.float32, ) * pad_value ) ndim = array.ndim if ndim == 4: padded_array = padded_array.set_subtensor(array)[:, :, :t_height, :t_width] elif ndim == 3: padded_array = padded_array.set_subtensor(array)[:, :t_height, :t_width] else: raise Exception("Not supported tensor dim: %d" % ndim) return padded_array