# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import math from typing import List import megengine.module as M from megengine.core import Tensor from official.vision.detection.layers import basic class RetinaNetHead(M.Module): """ The head used in RetinaNet for object classification and box regression. """ def __init__(self, cfg, input_shape: List[basic.ShapeSpec]): super().__init__() in_channels = input_shape[0].channels num_classes = cfg.num_classes num_convs = 4 prior_prob = cfg.cls_prior_prob num_anchors = [len(cfg.anchor_ratios) * len(cfg.anchor_scales)] * 5 assert ( len(set(num_anchors)) == 1 ), "not support different number of anchors between levels" num_anchors = num_anchors[0] cls_subnet = [] bbox_subnet = [] for _ in range(num_convs): cls_subnet.append( M.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1,) ) cls_subnet.append(M.ReLU()) bbox_subnet.append( M.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1,) ) bbox_subnet.append(M.ReLU()) self.cls_subnet = M.Sequential(*cls_subnet) self.bbox_subnet = M.Sequential(*bbox_subnet) self.cls_score = M.Conv2d( in_channels, num_anchors * num_classes, kernel_size=3, stride=1, padding=1, ) self.bbox_pred = M.Conv2d( in_channels, num_anchors * 4, kernel_size=3, stride=1, padding=1 ) # Initialization for modules in [ self.cls_subnet, self.bbox_subnet, self.cls_score, self.bbox_pred, ]: for layer in modules.modules(): if isinstance(layer, M.Conv2d): M.init.normal_(layer.weight, mean=0, std=0.01) M.init.fill_(layer.bias, 0) # Use prior in model initialization to improve stability bias_value = -math.log((1 - prior_prob) / prior_prob) M.init.fill_(self.cls_score.bias, bias_value) def forward(self, features: List[Tensor]): logits, bbox_reg = [], [] for feature in features: logits.append(self.cls_score(self.cls_subnet(feature))) bbox_reg.append(self.bbox_pred(self.bbox_subnet(feature))) return logits, bbox_reg