# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import argparse import importlib import os import sys import cv2 import numpy as np import megengine as mge from megengine import jit from megengine.data.dataset import COCO from official.vision.detection.tools.utils import DetEvaluator logger = mge.get_logger(__name__) def make_parser(): parser = argparse.ArgumentParser() parser.add_argument("-f", "--file", type=str, help="net description file") parser.add_argument("-w", "--weight_file", type=str, help="weights file") parser.add_argument("-i", "--image", type=str) return parser def main(): parser = make_parser() args = parser.parse_args() @jit.trace(symbolic=True) def val_func(): pred = model(model.inputs) return pred sys.path.insert(0, os.path.dirname(args.file)) current_network = importlib.import_module(os.path.basename(args.file).split(".")[0]) cfg = current_network.Cfg() cfg.backbone_pretrained = False model = current_network.Net(cfg, batch_size=1) model.eval() state_dict = mge.load(args.weight_file) if "state_dict" in state_dict: state_dict = state_dict["state_dict"] model.load_state_dict(state_dict) evaluator = DetEvaluator(model) ori_img = cv2.imread(args.image) data, im_info = DetEvaluator.process_inputs( ori_img.copy(), model.cfg.test_image_short_size, model.cfg.test_image_max_size, ) model.inputs["image"].set_value(data) model.inputs["im_info"].set_value(im_info) pred_res = evaluator.predict(val_func) res_img = DetEvaluator.vis_det( ori_img, pred_res, is_show_label=True, classes=COCO.class_names, ) cv2.imwrite("results.jpg", res_img) if __name__ == "__main__": main()