未验证 提交 17dce662 编写于 作者: Y Yizhuang Zhou 提交者: GitHub

feat(classification): add resnext101 pretrained model (#7)

上级 d67b5efe
...@@ -62,6 +62,7 @@ export PYTHONPATH=/path/to/models:$PYTHONPATH ...@@ -62,6 +62,7 @@ export PYTHONPATH=/path/to/models:$PYTHONPATH
| ResNet101 | 77.944 | 93.844 | | ResNet101 | 77.944 | 93.844 |
| ResNet152 | 78.582 | 94.130 | | ResNet152 | 78.582 | 94.130 |
| ResNeXt50 32x4d | 77.592 | 93.644 | | ResNeXt50 32x4d | 77.592 | 93.644 |
| ResNeXt101 32x8d| 79.520 | 94.586 |
| ShuffleNetV2 x0.5 | 60.696 | 82.190 | | ShuffleNetV2 x0.5 | 60.696 | 82.190 |
| ShuffleNetV2 x1.0 | 69.372 | 88.764 | | ShuffleNetV2 x1.0 | 69.372 | 88.764 |
| ShuffleNetV2 x1.5 | 72.806 | 90.792 | | ShuffleNetV2 x1.5 | 72.806 | 90.792 |
......
...@@ -14,6 +14,7 @@ ...@@ -14,6 +14,7 @@
| ResNet101 | 77.944 | 93.844 | | ResNet101 | 77.944 | 93.844 |
| ResNet152 | 78.582 | 94.130 | | ResNet152 | 78.582 | 94.130 |
| ResNeXt50 32x4d | 77.592 | 93.644 | | ResNeXt50 32x4d | 77.592 | 93.644 |
| ResNeXt101 32x8d| 79.520 | 94.586 |
用户可以通过`megengine.hub`直接加载本目录下定义好的模型,例如: 用户可以通过`megengine.hub`直接加载本目录下定义好的模型,例如:
......
...@@ -367,6 +367,9 @@ def resnext50_32x4d(**kwargs): ...@@ -367,6 +367,9 @@ def resnext50_32x4d(**kwargs):
return ResNet(Bottleneck, [3, 4, 6, 3], **kwargs) return ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
@hub.pretrained(
"https://data.megengine.org.cn/models/weights/resnext101_32x8d_fbaug_79520_80efb344.pkl"
)
def resnext101_32x8d(**kwargs): def resnext101_32x8d(**kwargs):
r"""ResNeXt-101 32x8d model from r"""ResNeXt-101 32x8d model from
`"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_ `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册