/** * \file dnn/src/cuda/matrix_mul/algos.h * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or * implied. */ #pragma once #include "megdnn/oprs.h" #include "src/common/utils.h" #include "src/cuda/matrix_mul/opr_impl.h" #include "src/common/algo_base.h" #include "src/common/metahelper.h" #include #include #include #if CUDA_VERSION >= 10010 #include #endif namespace megdnn { namespace cuda { /*! * \brief base class for matrix mul algos * */ class MatrixMulForwardImpl::AlgoBase : public Algorithm { protected: ~AlgoBase() = default; public: enum class AlgoType : uint32_t { CUDA_CUBLAS, CUDA_WMMA_UINT4X4X32, CUDA_CUBLASLT, CUDA_NAIVE, CUDA_BFLOAT16, #if CUDA_VERSION >= 9020 CUDA_FLOAT32_SIMT, CUDA_FLOAT32_SIMT_SPLIT_K, CUDA_FLOAT32_SIMT_GEMV_BATCHED_STRIDED, CUDA_FLOAT16_TENSOR_OP, CUDA_FLOAT16_TENSOR_OP_SPLIT_K, #endif }; using Mapper = std::unordered_map; AlgoBase() : Algorithm() { m_handle_type = Handle::HandleType::CUDA; } struct SizeArgs { MatrixMulForwardImpl* opr; TensorLayout layout_a, layout_b, layout_c; std::string to_string() const; SizeArgs(MatrixMulForwardImpl* opr, const TensorLayout& A, const TensorLayout& B, const TensorLayout& C); bool can_be_treated_as_int8x8x32() const { return layout_a.dtype.enumv() == layout_b.dtype.enumv() && (layout_a.dtype.enumv() == DTypeEnum::Int8 || layout_a.dtype.enumv() == DTypeEnum::QuantizedS8) && (layout_c.dtype.enumv() == DTypeEnum::Int32 || layout_c.dtype.enumv() == DTypeEnum::QuantizedS32) && opr->param().format == param::MatrixMul::Format::DEFAULT; } }; struct ExecArgs : public SizeArgs { TensorND tensor_a, tensor_b, tensor_c; Workspace workspace; ExecArgs(MatrixMulForwardImpl* opr, _megdnn_tensor_in A, _megdnn_tensor_in B, _megdnn_tensor_out C, _megdnn_workspace workspace); }; virtual bool is_available(const SizeArgs& args) const = 0; virtual size_t get_workspace_in_bytes(const SizeArgs& args) const = 0; virtual void exec(const ExecArgs& args) const = 0; bool is_available_wk(const SizeArgs& args, size_t limit) const { return is_available(args) && get_workspace_in_bytes(args) <= limit; } bool is_available_attribute( const SizeArgs& args, const AlgoAttribute& positive_attr = AlgoAttribute::REPRODUCIBLE, const AlgoAttribute& negative_attr = AlgoAttribute::DEFAULT, size_t limit = std::numeric_limits::max()) const { return contain_attribute_all(positive_attr) && !contain_attribute_any(negative_attr) && is_available_wk(args, limit); } AlgoBase& check_workspace(const SizeArgs& args, const Workspace& workspace) { auto req = get_workspace_in_bytes(args); megdnn_assert( req <= workspace.size, "matrix mul fwd algo %s: required workspace %zu bytes, got %zu", name(), req, workspace.size); return *this; } }; class MatrixMulForwardImpl::AlgoCuBlas final : public AlgoBase { public: AlgoCuBlas() = default; bool is_available(const SizeArgs& args) const override; size_t get_workspace_in_bytes(const SizeArgs& /* args */) const override { return 0_z; } const char* name() const override { return "CUBLAS"; } void exec(const ExecArgs& args) const override; MEGDNN_DECL_ALGO_TYPE(CUDA_CUBLAS) AlgoAttribute attribute() const override { return AlgoAttribute::REPRODUCIBLE | AlgoAttribute::USABLE_DEPEND_ON_SHAPE | AlgoAttribute::ACCURACY_DEPEND_ON_BATCH; } }; #if CUDA_VERSION >= 10000 class MatrixMulForwardImpl::AlgoUInt4x4x32WMMA final : public AlgoBase { public: AlgoUInt4x4x32WMMA() = default; bool is_available(const SizeArgs& args) const override; size_t get_workspace_in_bytes(const SizeArgs& args) const override; const char* name() const override { return "UINT4x4x32_WMMA"; } void exec(const ExecArgs& args) const override; MEGDNN_DECL_ALGO_TYPE(CUDA_WMMA_UINT4X4X32) AlgoAttribute attribute() const override { return AlgoAttribute::REPRODUCIBLE; } }; #endif #if CUDA_VERSION >= 10010 class MatrixMulForwardImpl::AlgoCuBlasLt final : public AlgoBase { public: bool is_available(const SizeArgs& args) const override; size_t get_workspace_in_bytes(const SizeArgs& args) const override; const char* name() const override { return "CUBLAS_LT"; } void exec(const ExecArgs& args) const override; MEGDNN_DECL_ALGO_TYPE(CUDA_CUBLASLT) AlgoAttribute attribute() const override { return AlgoAttribute::REPRODUCIBLE | AlgoAttribute::ACCURACY_DEPEND_ON_BATCH; } }; #endif class MatrixMulForwardImpl::AlgoNaive final : public AlgoBase { public: AlgoNaive() = default; bool is_available(const SizeArgs& args) const override; size_t get_workspace_in_bytes(const SizeArgs& /* args */) const override { return 0_z; } const char* name() const override { return "NAIVE"; } void exec(const ExecArgs& args) const override; MEGDNN_DECL_ALGO_TYPE(CUDA_NAIVE) AlgoAttribute attribute() const override { return AlgoAttribute::REPRODUCIBLE | AlgoAttribute::NAIVE; } }; #if !MEGDNN_DISABLE_FLOAT16 class MatrixMulForwardImpl::AlgoBFloat16 final : public AlgoBase { public: bool is_available(const SizeArgs& args) const override; size_t get_workspace_in_bytes(const SizeArgs& args) const override; void exec(const ExecArgs& args) const override; MEGDNN_DECL_ALGO_TYPE(CUDA_BFLOAT16) std::vector get_subopr_list( const TensorLayoutArray& layouts, const OperatorBase* opr) const override; const char* name() const override { return "MATMUL_BFLOAT16"; } AlgoAttribute attribute() const override { return AlgoAttribute::REPRODUCIBLE; } private: WorkspaceBundle get_workspace_bundle(void* ptr, const SizeArgs& args) const; }; #endif #if CUDA_VERSION >= 9020 class MatrixMulForwardImpl::AlgoCutlassMatrixMulBase : public AlgoBase { public: struct AlgoParam { int threadblock_m, threadblock_n, threadblock_k; int warp_m, warp_n, warp_k; int instruction_m, instruction_n, instruction_k; AlgoParam(int threadblock_m_, int threadblock_n_, int threadblock_k_, int warp_m_, int warp_n_, int warp_k_, int instruction_m_ = 1, int instruction_n_ = 1, int instruction_k_ = 1) : threadblock_m{threadblock_m_}, threadblock_n{threadblock_n_}, threadblock_k{threadblock_k_}, warp_m{warp_m_}, warp_n{warp_n_}, warp_k{warp_k_}, instruction_m{instruction_m_}, instruction_n{instruction_n_}, instruction_k{instruction_k_} {} std::string to_string() const; }; AlgoCutlassMatrixMulBase(AlgoParam algo_param) : m_algo_param{algo_param} {} void exec(const ExecArgs& args) const override; std::string param() const override { std::string ret; serialize_write_pod(m_algo_param, ret); return ret; } protected: virtual int min_alignment_requirement() const = 0; virtual void do_exec(const ExecArgs& args) const = 0; std::pair construct_aligned_layouts( const SizeArgs& args) const; int max_alignment(const SizeArgs& args) const; AlgoParam m_algo_param; }; class MatrixMulForwardImpl::AlgoFloat32SIMT final : public AlgoCutlassMatrixMulBase { public: AlgoFloat32SIMT(AlgoParam algo_param) : AlgoCutlassMatrixMulBase{algo_param}, m_name{ssprintf("CUTLASS_FLOAT32_SIMT_%s", m_algo_param.to_string().c_str())} {} bool is_available(const SizeArgs& args) const override; size_t get_workspace_in_bytes(const SizeArgs& args) const override; const char* name() const override { return m_name.c_str(); } AlgoAttribute attribute() const override { return AlgoAttribute::REPRODUCIBLE; } MEGDNN_DECL_ALGO_TYPE(CUDA_FLOAT32_SIMT) std::string param() const override { std::string ret; // FIXME: algo param compatible with old version, to avoid fastrun cache error struct AlgoParam_ { int threadblock_m, threadblock_n, threadblock_k; int warp_m, warp_n, warp_k; }; AlgoParam_ algo_param{ m_algo_param.threadblock_m, m_algo_param.threadblock_n, m_algo_param.threadblock_k, m_algo_param.warp_m, m_algo_param.warp_n, m_algo_param.warp_k}; serialize_write_pod(algo_param, ret); return ret; } private: void do_exec(const ExecArgs& args) const override; int min_alignment_requirement() const override { return 1; } std::string m_name; }; class MatrixMulForwardImpl::AlgoFloat32SIMTSplitK final : public AlgoCutlassMatrixMulBase { public: AlgoFloat32SIMTSplitK(AlgoParam algo_param) : AlgoCutlassMatrixMulBase{algo_param}, m_name{ssprintf("CUTLASS_FLOAT32_SIMT_SPLIT_K_%s", m_algo_param.to_string().c_str())} {} bool is_available(const SizeArgs& args) const override; size_t get_workspace_in_bytes(const SizeArgs& args) const override; const char* name() const override { return m_name.c_str(); } AlgoAttribute attribute() const override { return AlgoAttribute::REPRODUCIBLE | AlgoAttribute::USABLE_DEPEND_ON_SHAPE; } MEGDNN_DECL_ALGO_TYPE(CUDA_FLOAT32_SIMT_SPLIT_K) std::string param() const override { std::string ret; // FIXME: algo param compatible with old version, to avoid fastrun cache // error struct AlgoParam_ { int threadblock_m, threadblock_n, threadblock_k; int warp_m, warp_n, warp_k; }; AlgoParam_ algo_param{ m_algo_param.threadblock_m, m_algo_param.threadblock_n, m_algo_param.threadblock_k, m_algo_param.warp_m, m_algo_param.warp_n, m_algo_param.warp_k}; serialize_write_pod(algo_param, ret); return ret; } private: void do_exec(const ExecArgs& args) const override; int min_alignment_requirement() const override { return 1; } std::string m_name; }; class MatrixMulForwardImpl::AlgoFloat32SIMTGemvBatchedStrided final : public AlgoBase { public: AlgoFloat32SIMTGemvBatchedStrided(int threadblock_n) : m_threadblock_n{threadblock_n}, m_name{ssprintf("CUTLASS_FLOAT32_SIMT_GEMV_BATCHED_STRIDED_%d", m_threadblock_n)} {} bool is_available(const SizeArgs& args) const override; size_t get_workspace_in_bytes(const SizeArgs& args) const override; const char* name() const override { return m_name.c_str(); } void exec(const ExecArgs& args) const override; AlgoAttribute attribute() const override { return AlgoAttribute::REPRODUCIBLE; } MEGDNN_DECL_ALGO_TYPE(CUDA_FLOAT32_SIMT_GEMV_BATCHED_STRIDED) std::string param() const override { std::string ret; serialize_write_pod(m_threadblock_n, ret); return ret; } private: int m_threadblock_n; std::string m_name; }; #if CUDA_VERSION >= 10020 class MatrixMulForwardImpl::AlgoFloat16TensorOp final : public AlgoCutlassMatrixMulBase { public: AlgoFloat16TensorOp(AlgoParam algo_param) : AlgoCutlassMatrixMulBase{algo_param}, m_name{ssprintf("CUTLASS_FLOAT16_TENSOR_OP_h%d%d%d_%s", m_algo_param.instruction_m, m_algo_param.instruction_n, m_algo_param.instruction_k, m_algo_param.to_string().c_str())} {} bool is_available(const SizeArgs& args) const override; size_t get_workspace_in_bytes(const SizeArgs& args) const override; const char* name() const override { return m_name.c_str(); } AlgoAttribute attribute() const override { return AlgoAttribute::REPRODUCIBLE; } MEGDNN_DECL_ALGO_TYPE(CUDA_FLOAT16_TENSOR_OP) private: void do_exec(const ExecArgs& args) const override; int min_alignment_requirement() const override { return 2; } std::string m_name; }; class MatrixMulForwardImpl::AlgoFloat16TensorOpSplitK final : public AlgoCutlassMatrixMulBase { public: AlgoFloat16TensorOpSplitK(AlgoParam algo_param) : AlgoCutlassMatrixMulBase{algo_param}, m_name{ssprintf("CUTLASS_FLOAT16_TENSOR_OP_SPLIT_K_h%d%d%d_%s", m_algo_param.instruction_m, m_algo_param.instruction_n, m_algo_param.instruction_k, m_algo_param.to_string().c_str())} {} bool is_available(const SizeArgs& args) const override; size_t get_workspace_in_bytes(const SizeArgs& args) const override; const char* name() const override { return m_name.c_str(); } AlgoAttribute attribute() const override { return AlgoAttribute::REPRODUCIBLE | AlgoAttribute::USABLE_DEPEND_ON_SHAPE; } MEGDNN_DECL_ALGO_TYPE(CUDA_FLOAT16_TENSOR_OP_SPLIT_K) private: void do_exec(const ExecArgs& args) const override; int min_alignment_requirement() const override { return 2; } std::string m_name; }; #endif #endif class MatrixMulForwardImpl::AlgoPack : NonCopyableObj { private: AlgoBase::Mapper m_all_algos_map; public: AlgoPack(); AlgoCuBlas cublas; AlgoNaive naive; #if CUDA_VERSION >= 10000 AlgoUInt4x4x32WMMA wmma_uint4x4x32; #endif #if CUDA_VERSION >= 10010 AlgoCuBlasLt cublas_lt; #endif #if !MEGDNN_DISABLE_FLOAT16 AlgoBFloat16 bfloat16; #endif #if CUDA_VERSION >= 9020 std::vector simt_float32; std::vector simt_float32_split_k; std::vector simt_float32_gemv_batched_strided; #if CUDA_VERSION >= 10020 std::vector tensorop_float16; std::vector tensorop_float16_split_k; #endif #endif std::vector all_algos; const AlgoBase::Mapper& all_algos_map() const { return m_all_algos_map; } void fill_cutlass_algos(); }; } // namespace cuda } // namespace megdnn // vim: syntax=cpp.doxygen