/** * \file dnn/src/cuda/elemwise_helper.cuh * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2020 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or * implied. */ #pragma once #include "src/common/elemwise_helper.cuh" #include "src/cuda/utils.cuh" #include "src/cuda/int_fastdiv.cuh" #include "src/cuda/query_blocksize.cuh" /* * please note that all arithmetics on GPU are 32-bit for best performance; this * limits max possible size */ namespace megdnn { namespace cuda { //! internals for element-wise namespace elemwise_intl { #define devfunc __device__ __forceinline__ /*! * \brief get cuda launch specs for element-wise kernel * \param kern kernel function address * \param size total size of elements */ void get_launch_spec(const void* kern, size_t size, int* grid_size, int* block_size); MEGDNN_NORETURN void on_bad_ndim(int ndim); /*! * \brief broadcast type * BCAST_x[0]x[1]...: x[i] == !stride[i] */ enum BcastType { BCAST_OTHER, BCAST_1010, BCAST_101, BCAST_10, BCAST_01, BCAST_FULL }; /*! * \brief read and write type trait for byte width integer type */ template class VectTypeTrait; struct __attribute__((aligned(8))) half4 { dt_float16 x, y, z, w; }; __device__ __forceinline__ half4 make_half4(dt_float16 x, dt_float16 y, dt_float16 z, dt_float16 w) { half4 t; t.x = x, t.y = y, t.z = z, t.w = w; return t; } struct __attribute__((aligned(8))) bhalf4 { dt_bfloat16 x, y, z, w; }; __device__ __forceinline__ bhalf4 make_bhalf4(dt_bfloat16 x, dt_bfloat16 y, dt_bfloat16 z, dt_bfloat16 w) { bhalf4 t; t.x = x, t.y = y, t.z = z, t.w = w; return t; } #define INST(_ctype, _vect_type) \ template <> \ class VectTypeTrait<_ctype> { \ public: \ using vect_type = _vect_type; \ static const size_t packed_size = sizeof(_vect_type) / sizeof(_ctype); \ static __device__ __forceinline__ vect_type make_vector(_ctype x, \ _ctype y, \ _ctype z, \ _ctype w) { \ return make_##_vect_type(as_raw(x), as_raw(y), as_raw(z), \ as_raw(w)); \ } \ } #define as_raw(x) x INST(dt_int8, char4); INST(dt_uint8, uchar4); INST(dt_float32, float4); INST(dt_float16, half4); INST(dt_bfloat16, bhalf4); INST(dt_int32, int4); INST(dt_int16, short4); #undef as_raw #define as_raw(x) x.as_int8() INST(dt_qint8, char4); #undef as_raw #define as_raw(x) x.as_uint8() INST(dt_quint8, uchar4); #undef as_raw #define as_raw(x) x.as_int32() INST(dt_qint32, int4); #undef as_raw #undef INST /*! * \brief visitor to access an elemeent in a tensor at given logic index * \tparam ctype plain element ctype (i.e. ctype in DTypeTrait) * \tparam brdcast_mask bit mask for broadcast of params; (i.e. stride[i] is * 0 iff (brdcast_mask & (1<<(ndim-1-i))) is 1. * * host interface: * void host_init( * const TensorND &tensor, int grid_size, int block_size) * * device interface: * void thread_init(uint32_t idx) * called on thread entrance, with logical indexing; the index may * go beyond buffer range * * ctype* ptr() * return buffer pointer; can be used by specialized OpCaller * * void next() * called before moving to next chunk on each thread * * int offset(uint32_t idx) * get physical offset from logical index * * ctype& at(uint32_t idx) * ptr()[offset(idx)] * */ template class ParamVisitorBase; template class ParamElemVisitor; /*! * \brief visitor to access vector element in a tensor at given logic index * \tparam ctype same as ParamElemVisitor, vect_type packed vector type of * element ctype (i.e. vect_type in VectTypeTrait) \tparam brdcast_mask same * as ParamElemVisitor * * * device interface: * vect_type& at(uint32_t idx) * ptr()[offset(idx)] * */ template class ParamVectVisitor; /* f{{{ ParamElemVisitor specializations */ #define PARAM_ELEM_VISITOR_COMMON_DEV \ devfunc ctype* ptr() { return m_ptr; } \ devfunc ctype& at(uint32_t idx) { return m_ptr[offset(idx)]; } #define PARAM_ELEM_VISITOR_COMMON_HOST static const int packed_size = 1; //! specialization for BCAST_OTHER template class ParamVisitorBase { protected: ctype* __restrict m_ptr; int m_stride[ndim]; //! m_shape_highdim[i] = original_shape[i + 1] #ifdef _MSC_VER Uint32Fastdiv m_shape_highdim[ndim > 1 ? ndim - 1 : 1]; #else Uint32Fastdiv m_shape_highdim[ndim]; #endif public: static const int NDIM = ndim; void host_init(const TensorND& rv, int grid_size, int block_size, int packed_size); #if MEGDNN_CC_CUDA devfunc void thread_init(uint32_t) {} devfunc void next() {} devfunc int offset(uint32_t idx) { int offset = 0; #pragma unroll for (int i = ndim - 1; i >= 1; --i) { Uint32Fastdiv& shp = m_shape_highdim[i - 1]; uint32_t idx_div = idx / shp; offset += (idx - idx_div * shp.divisor()) * m_stride[i]; idx = idx_div; } offset += idx * m_stride[0]; return offset; } PARAM_ELEM_VISITOR_COMMON_DEV #endif }; template class ParamElemVisitor : public ParamVisitorBase { public: PARAM_ELEM_VISITOR_COMMON_HOST void host_init(const TensorND& rv, int grid_size, int block_size) { ParamVisitorBase::host_init( rv, grid_size, block_size, packed_size); } }; /*! * \brief specialization for ndim == 3 and BCAST_101 * (for dimshuffle 'x', 0, 'x') * * visit: idx / m_shape2 % m_shape1 */ template class ParamVisitorBase<3, ctype, BCAST_101> { StridedDivSeq2 m_shape12; int m_stride1; protected: ctype* __restrict m_ptr; public: static const int NDIM = 3; void host_init(const TensorND& rv, int grid_size, int block_size, int packed_size); #if MEGDNN_CC_CUDA devfunc void thread_init(uint32_t idx) { m_shape12.device_init(idx); } devfunc void next() { m_shape12.next(); } devfunc int offset(uint32_t idx) { return m_shape12.get() * m_stride1; } PARAM_ELEM_VISITOR_COMMON_DEV #endif }; template class ParamElemVisitor<3, ctype, BCAST_101> : public ParamVisitorBase<3, ctype, BCAST_101> { public: PARAM_ELEM_VISITOR_COMMON_HOST void host_init(const TensorND& rv, int grid_size, int block_size) { ParamVisitorBase<3, ctype, BCAST_101>::host_init( rv, grid_size, block_size, packed_size); } }; /*! * \brief specialization for ndim == 2 and BCAST_10 * * visit: idx % m_shape1 */ template class ParamVisitorBase<2, ctype, BCAST_10> { StridedDivSeq m_shape1; int m_stride1; protected: ctype* __restrict m_ptr; public: static const int NDIM = 2; void host_init(const TensorND& rv, int grid_size, int block_size, int packed_size); #if MEGDNN_CC_CUDA devfunc void thread_init(uint32_t idx) { m_shape1.device_init(idx); } devfunc void next() { m_shape1.next(); } devfunc int offset(uint32_t idx) { return m_shape1.r() * m_stride1; } PARAM_ELEM_VISITOR_COMMON_DEV #endif }; template class ParamElemVisitor<2, ctype, BCAST_10> : public ParamVisitorBase<2, ctype, BCAST_10> { public: PARAM_ELEM_VISITOR_COMMON_HOST void host_init(const TensorND& rv, int grid_size, int block_size) { ParamVisitorBase<2, ctype, BCAST_10>::host_init( rv, grid_size, block_size, packed_size); } }; /*! * \brief specialization for ndim == 2 and BCAST_01 * * visit: idx / shape1 */ template class ParamVisitorBase<2, ctype, BCAST_01> { StridedDivSeq m_shape1; int m_stride0; protected: ctype* __restrict m_ptr; public: static const int NDIM = 2; void host_init(const TensorND& rv, int grid_size, int block_size, int packed_size); #if MEGDNN_CC_CUDA devfunc void thread_init(uint32_t idx) { m_shape1.device_init(idx); } devfunc void next() { m_shape1.next(); } devfunc int offset(uint32_t idx) { return m_shape1.q() * m_stride0; } PARAM_ELEM_VISITOR_COMMON_DEV #endif }; template class ParamElemVisitor<2, ctype, BCAST_01> : public ParamVisitorBase<2, ctype, BCAST_01> { public: PARAM_ELEM_VISITOR_COMMON_HOST void host_init(const TensorND& rv, int grid_size, int block_size) { ParamVisitorBase<2, ctype, BCAST_01>::host_init( rv, grid_size, block_size, packed_size); } }; //! specialization for ndim == 1 and BCAST_FULL template class ParamVisitorBase<1, ctype, BCAST_FULL> { protected: ctype* __restrict m_ptr; public: static const int NDIM = 1; PARAM_ELEM_VISITOR_COMMON_HOST void host_init(const TensorND& rv, int grid_size, int block_size, int packed_size); #if MEGDNN_CC_CUDA devfunc void thread_init(uint32_t) {} devfunc void next() {} devfunc int offset(uint32_t idx) { MEGDNN_MARK_USED_VAR(idx); return 0; } PARAM_ELEM_VISITOR_COMMON_DEV #endif }; template class ParamElemVisitor<1, ctype, BCAST_FULL> : public ParamVisitorBase<1, ctype, BCAST_FULL> { public: PARAM_ELEM_VISITOR_COMMON_HOST void host_init(const TensorND& rv, int grid_size, int block_size) { ParamVisitorBase<1, ctype, BCAST_FULL>::host_init( rv, grid_size, block_size, packed_size); } }; #undef PARAM_ELEM_VISITOR_COMMON_DEV #undef PARAM_ELEM_VISITOR_COMMON_HOST /* f}}} */ /* f{{{ ParamVectVisitor specializations */ #if MEGDNN_CC_CUDA #define DEVICE_WRAPPER(x) x #else #define DEVICE_WRAPPER(x) #endif #define INST_PARAM_VECT_VISITOR \ template \ class ParamVectVisitor \ : public ParamVisitorBase { \ public: \ using Super = ParamVisitorBase; \ using rwtype = typename VectTypeTrait::vect_type; \ static const int packed_size = sizeof(rwtype) / sizeof(ctype); \ void host_init(const TensorND& rv, int grid_size, int block_size) { \ ParamVisitorBase::host_init( \ rv, grid_size, block_size, packed_size); \ } \ DEVICE_WRAPPER(devfunc rwtype& at(uint32_t idx) { \ return *(rwtype*)(&Super::m_ptr[Super::offset(idx)]); \ }) \ }; #define _brdcast_mask BCAST_OTHER INST_PARAM_VECT_VISITOR; #undef _brdcast_mask #define _brdcast_mask BCAST_01 INST_PARAM_VECT_VISITOR; #undef _brdcast_mask #define _brdcast_mask BCAST_10 INST_PARAM_VECT_VISITOR; #undef _brdcast_mask #define _brdcast_mask BCAST_101 INST_PARAM_VECT_VISITOR; #undef _brdcast_mask #define INST_DT_IBYTE(ctype) \ template \ class ParamVectVisitor \ : public ParamVisitorBase { \ public: \ using Super = ParamVisitorBase; \ using rwtype = typename VectTypeTrait::vect_type; \ static const int packed_size = sizeof(rwtype) / sizeof(ctype); \ void host_init(const TensorND& rv, int grid_size, int block_size) { \ ParamVisitorBase::host_init( \ rv, grid_size, block_size, packed_size); \ } \ DEVICE_WRAPPER(rwtype vect_scalar; \ devfunc rwtype & at(uint32_t /* idx */) { \ ctype v = Super::m_ptr[0]; \ vect_scalar = VectTypeTrait::make_vector( \ v, v, v, v); \ return vect_scalar; \ }) \ } INST_DT_IBYTE(dt_int8); INST_DT_IBYTE(dt_uint8); INST_DT_IBYTE(dt_qint8); INST_DT_IBYTE(dt_quint8); #undef INST_DT_IBYTE #undef DEVICE_WRAPPER #undef INST_PARAM_VECT_VISITOR /*! * \brief specialization for ndim == 4 and BCAST_1010 * * visit: (idx % m_shape3) * m_stride3 + (idx / m_shape23 % m_shape1) * * m_stride1 */ template class ParamVectVisitor<4, ctype, BCAST_1010> { StridedDivSeq2 m_shape123; StridedDivSeq m_shape3; int m_stride3, m_stride1; ctype* __restrict m_ptr; public: static const int NDIM = 4; using rwtype = typename VectTypeTrait::vect_type; static const int packed_size = sizeof(rwtype) / sizeof(ctype); void host_init(const TensorND& rv, int grid_size, int block_size); #if MEGDNN_CC_CUDA devfunc void thread_init(uint32_t idx) { m_shape123.device_init(idx); m_shape3.device_init(idx); } devfunc void next() { m_shape123.next(); m_shape3.next(); } devfunc int offset(uint32_t idx) { return m_shape3.r() * m_stride3 + m_shape123.get() * m_stride1; } devfunc ctype* ptr() { return m_ptr; } devfunc rwtype& at(uint32_t idx) { return *(rwtype*)(&m_ptr[offset(idx)]); } #endif }; /* f}}} */ #if MEGDNN_CC_CUDA /* f{{{ user operator callers */ /* * OpCaller is used to invoke user operator with loaded element arguments. * * device interface: * void thread_init(uint32_t idx); * * void on(uint32_t idx); * * void next(); */ /*! * \brief call user op directly without visiting any params (i.e. arity == * 0) */ template struct OpCallerNull { Op op; devfunc void thread_init(uint32_t) {} devfunc void on(uint32_t idx) { op(idx); } devfunc void next() {} }; /*! * \brief call an operator whose each param are promted to the same ndim and * brdcast_mask * \tparam PVis ParamElemVisitor class */ template struct OpCallerUniform; //! specialization for arity == 1 template struct OpCallerUniform { Op op; PVis par[1]; static const uint32_t packed_size = PVis::packed_size; devfunc void thread_init(uint32_t idx) { idx = idx * packed_size; par[0].thread_init(idx); } devfunc void on(uint32_t idx) { idx = idx * packed_size; op(idx, par[0].at(idx)); } devfunc void on(uint32_t idx, uint32_t remain) { idx = idx * packed_size; if (remain >= packed_size) { op(idx, par[0].at(idx)); } else { auto ptr0 = par[0].ptr(); for (int i = 0; i < remain; i++) { op(idx + i, ptr0[par[0].offset(idx + i)]); } } } devfunc void next() { par[0].next(); } }; //! specialization for arity == 2 template struct OpCallerUniform { Op op; PVis par[2]; static const uint32_t packed_size = PVis::packed_size; devfunc void thread_init(uint32_t idx) { idx = idx * packed_size; par[0].thread_init(idx); par[1].thread_init(idx); } devfunc void on(uint32_t idx) { idx = idx * packed_size; op(idx, par[0].at(idx), par[1].at(idx)); } devfunc void on(uint32_t idx, uint32_t remain) { idx = idx * packed_size; if (remain >= packed_size) { op(idx, par[0].at(idx), par[1].at(idx)); } else { auto ptr0 = par[0].ptr(); auto ptr1 = par[1].ptr(); for (int i = 0; i < remain; i++) { op(idx + i, ptr0[par[0].offset(idx + i)], ptr1[par[1].offset(idx + i)]); } } } devfunc void next() { par[0].next(); par[1].next(); } }; //! specialization for arity == 3 template struct OpCallerUniform { Op op; PVis par[3]; static const uint32_t packed_size = PVis::packed_size; devfunc void thread_init(uint32_t idx) { idx = idx * packed_size; par[0].thread_init(idx); par[1].thread_init(idx); par[2].thread_init(idx); } devfunc void on(uint32_t idx) { idx = idx * packed_size; op(idx, par[0].at(idx), par[1].at(idx), par[2].at(idx)); } devfunc void on(uint32_t idx, uint32_t remain) { idx = idx * packed_size; if (remain >= packed_size) { op(idx, par[0].at(idx), par[1].at(idx), par[2].at(idx)); } else { auto ptr0 = par[0].ptr(); auto ptr1 = par[1].ptr(); auto ptr2 = par[2].ptr(); for (int i = 0; i < remain; i++) { op(idx + i, ptr0[par[0].offset(idx + i)], ptr1[par[1].offset(idx + i)], ptr2[par[2].offset(idx + i)]); } } } devfunc void next() { par[0].next(); par[1].next(); par[2].next(); } }; /*! * \brief call binary (i.e. arity == 2) operator with different param * visitors */ template struct OpCallerBinary { Op op; PVis0 par0; PVis1 par1; MEGDNN_STATIC_ASSERT(PVis0::packed_size == PVis1::packed_size, "vector size mismatch") static const uint32_t packed_size = PVis0::packed_size; devfunc void thread_init(uint32_t idx) { idx = idx * packed_size; par0.thread_init(idx); par1.thread_init(idx); } devfunc void on(uint32_t idx) { idx = idx * packed_size; op(idx, par0.at(idx), par1.at(idx)); } devfunc void next() { par0.next(); par1.next(); } }; /* f}}} */ template __global__ void cuda_kern(OpCaller op_caller, uint32_t size) { uint32_t idx = blockIdx.x * blockDim.x + threadIdx.x, delta = blockDim.x * gridDim.x; // each thread works on at most 3 elements; see get_launch_spec op_caller.thread_init(idx); if (idx < size) { op_caller.on(idx); idx += delta; if (idx < size) { op_caller.next(); op_caller.on(idx); idx += delta; if (idx < size) { op_caller.next(); op_caller.on(idx); } } } } template __global__ void cuda_kern(OpCallerUniform op_caller, uint32_t size) { constexpr uint32_t packed_size = PVis::packed_size; const uint32_t size_packed = DIVUP(size, packed_size); uint32_t idx = blockIdx.x * blockDim.x + threadIdx.x, delta = blockDim.x * gridDim.x; if (idx < size_packed) { op_caller.on(idx, size - packed_size * idx); idx += delta; if (idx < size_packed) { op_caller.on(idx, size - packed_size * idx); idx += delta; if (idx < size_packed) { op_caller.on(idx, size - packed_size * idx); } } } } //! invoke a user Op passed to run_elemwise template class UserOpInvoker; /* f{{{ UserOpInvoker specializations */ //! run op by promoting all params to same ndim template class UserOpInvokerToSameNdim { const ElemwiseOpParamN& m_param; cudaStream_t m_stream; const Op& m_op; void dispatch0() { switch (m_param.max_ndim) { #define cb(ndim) \ case ndim: \ return dispatch1(); MEGDNN_FOREACH_TENSOR_NDIM(cb) #undef cb } on_bad_ndim(m_param.max_ndim); } template void dispatch1() { typedef OpCallerUniform> Caller; size_t size = m_param.size; int grid_size, block_size; void (*fptr)(Caller, uint32_t) = cuda_kern; get_launch_spec(reinterpret_cast(fptr), size, &grid_size, &block_size); Caller caller; caller.op = m_op; for (int i = 0; i < arity; ++i) caller.par[i].host_init(m_param[i], grid_size, block_size); (*fptr)<<>>(caller, size); after_kernel_launch(); } public: UserOpInvokerToSameNdim(const ElemwiseOpParamN& param, cudaStream_t stream, const Op& op) : m_param(param), m_stream(stream), m_op(op) { dispatch0(); } }; template class UserOpInvokerToSameNdimIByteHelper { public: UserOpInvokerToSameNdimIByteHelper(const ElemwiseOpParamN& param, cudaStream_t stream, const Op& op) : m_rw_size(param.size), m_param(param), m_stream(stream), m_op(op) { if (!try_vect_load_store_contiguous() && !try_vect_load_store()) { dispatch0(); } } private: const ElemwiseOpParamN& m_param; size_t m_rw_size; cudaStream_t m_stream; const Op& m_op; using vect_type = typename VectTypeTrait::vect_type; static const size_t packed_size = VectTypeTrait::packed_size; void dispatch0() { switch (m_param.max_ndim) { #define cb(ndim) \ case ndim: \ return dispatch1(); MEGDNN_FOREACH_TENSOR_NDIM(cb) #undef cb } on_bad_ndim(m_param.max_ndim); } void dispatch0_vect() { switch (m_param.max_ndim) { #define cb(ndim) \ case ndim: \ return dispatch1_vect(); MEGDNN_FOREACH_TENSOR_NDIM(cb) #undef cb } on_bad_ndim(m_param.max_ndim); } void dispatch_contiguous() { typedef ParamVectVisitor<1, ctype, BCAST_OTHER> PVis; typedef OpCallerUniform Caller; size_t size = m_rw_size; int grid_size, block_size; void (*fptr)(Caller, uint32_t) = cuda_kern; get_launch_spec(reinterpret_cast(fptr), size, &grid_size, &block_size); Caller caller; caller.op = m_op; for (int i = 0; i < arity; ++i) caller.par[i].host_init(m_param[i], grid_size, block_size); (*fptr)<<>>(caller, m_param.size); after_kernel_launch(); } template void dispatch1() { typedef ParamElemVisitor PVis; typedef OpCallerUniform Caller; size_t size = m_rw_size; int grid_size, block_size; void (*fptr)(Caller, uint32_t) = cuda_kern; get_launch_spec(reinterpret_cast(fptr), size, &grid_size, &block_size); Caller caller; caller.op = m_op; for (int i = 0; i < arity; ++i) caller.par[i].host_init(m_param[i], grid_size, block_size); (*fptr)<<>>(caller, size); after_kernel_launch(); } template void dispatch1_vect() { typedef ParamVectVisitor PVis; typedef OpCallerUniform Caller; size_t size = m_rw_size; int grid_size, block_size; void (*fptr)(Caller, uint32_t) = cuda_kern; get_launch_spec(reinterpret_cast(fptr), size, &grid_size, &block_size); Caller caller; caller.op = m_op; for (int i = 0; i < arity; ++i) caller.par[i].host_init(m_param[i], grid_size, block_size); (*fptr)<<>>(caller, size); after_kernel_launch(); } bool try_vect_load_store() { auto try_last_contig = [](const TensorLayout& layout) { return layout.stride[layout.ndim - 1] == 1 && layout[layout.ndim - 1] % packed_size == 0; }; /* * \NOTE: remove try_scalar() to adapt multi-type tenary op */ for (int i = 0; i < arity; ++i) { if (!try_last_contig(m_param[i].layout)) return false; } m_rw_size /= packed_size; dispatch0_vect(); return true; } bool try_vect_load_store_contiguous() { auto try_contig = [](const TensorLayout& layout) { return (layout.is_contiguous()); }; for (int i = 0; i < arity; ++i) { if (!try_contig(m_param[i].layout)) return false; } m_rw_size = DIVUP(m_rw_size, packed_size); dispatch_contiguous(); return true; } }; #define INST_DT_IBYTE(ctype) \ template \ class UserOpInvokerToSameNdim \ : public UserOpInvokerToSameNdimIByteHelper { \ using Super = UserOpInvokerToSameNdimIByteHelper; \ \ public: \ UserOpInvokerToSameNdim(const ElemwiseOpParamN& param, \ cudaStream_t stream, const Op& op) \ : Super{param, stream, op} {} \ } INST_DT_IBYTE(dt_int8); INST_DT_IBYTE(dt_uint8); INST_DT_IBYTE(dt_qint8); INST_DT_IBYTE(dt_quint8); #undef INST_DT_IBYTE //! implement general case by UserOpInvokerToSameNdim template class UserOpInvoker : public UserOpInvokerToSameNdim { public: UserOpInvoker(const ElemwiseOpParamN& param, cudaStream_t stream, const Op& op) : UserOpInvokerToSameNdim(param, stream, op) {} }; //! specialization for arity == 0 template class UserOpInvoker { public: UserOpInvoker(const ElemwiseOpParamN<0>& param, cudaStream_t stream, const Op& op) { size_t size = param.size; typedef OpCallerNull Caller; Caller caller; caller.op = op; int grid_size, block_size; void (*fptr)(Caller, uint32_t) = cuda_kern; get_launch_spec(reinterpret_cast(fptr), size, &grid_size, &block_size); (*fptr)<<>>(caller, size); after_kernel_launch(); } }; #define DEFINE_BRDCAST_DISPATCH_RECEIVERS(_cb_header, _cb_dispatch, _stride) \ _cb_header(1) { \ const ptrdiff_t* stride = _stride; \ if (!stride[0]) { \ return _cb_dispatch(1, BCAST_FULL); \ } \ _cb_dispatch(1, BCAST_OTHER); \ } \ _cb_header(2) { \ const ptrdiff_t* stride = _stride; \ if (!stride[0] && stride[1]) { \ return _cb_dispatch(2, BCAST_10); \ } \ if (stride[0] && !stride[1]) { \ return _cb_dispatch(2, BCAST_01); \ } \ _cb_dispatch(2, BCAST_OTHER); \ } \ _cb_header(3) { \ const ptrdiff_t* stride = _stride; \ if (!stride[0] && stride[1] && !stride[2]) { \ return _cb_dispatch(3, BCAST_101); \ } \ _cb_dispatch(3, BCAST_OTHER); \ } //! specialization for binary opr template class UserOpInvoker { bool m_invoked; const ElemwiseOpParamN<2>& m_param; cudaStream_t m_stream; const Op& m_op; void fallback() { megdnn_assert(!m_invoked); UserOpInvokerToSameNdim(m_param, m_stream, m_op); m_invoked = true; } void dispatch0() { switch (m_param[0].layout.ndim) { #define cb(ndim) \ case ndim: \ return dispatch1_##ndim(); MEGDNN_FOREACH_TENSOR_NDIM_SMALL(cb) #undef cb } fallback(); } #define cb_header(ndim) void dispatch1_##ndim() #define cb_dispatch(ndim, brdcast_mask) \ dispatch2>() DEFINE_BRDCAST_DISPATCH_RECEIVERS(cb_header, cb_dispatch, m_param[0].layout.stride) #undef cb_header #undef cb_dispatch template void dispatch2() { switch (m_param[1].layout.ndim) { #define cb(ndim) \ case ndim: \ return dispatch3_##ndim(); MEGDNN_FOREACH_TENSOR_NDIM_SMALL(cb) #undef cb } fallback(); } #define cb_header(ndim) \ template \ void dispatch3_##ndim() #define cb_dispatch(ndim, brdcast_mask) \ do_run>() DEFINE_BRDCAST_DISPATCH_RECEIVERS(cb_header, cb_dispatch, m_param[1].layout.stride) #undef cb_header #undef cb_dispatch template void do_run() { megdnn_assert(!m_invoked); m_invoked = true; typedef OpCallerBinary Caller; int grid_size, block_size; void (*fptr)(Caller, uint32_t) = cuda_kern; size_t size = m_param.size; get_launch_spec(reinterpret_cast(fptr), size, &grid_size, &block_size); Caller caller; caller.op = m_op; caller.par0.host_init(m_param[0], grid_size, block_size); caller.par1.host_init(m_param[1], grid_size, block_size); (*fptr)<<>>(caller, size); after_kernel_launch(); } public: UserOpInvoker(const ElemwiseOpParamN<2>& param, cudaStream_t stream, const Op& op) : m_param(param), m_stream(stream), m_op(op) { m_invoked = false; dispatch0(); megdnn_assert(m_invoked); } }; #define DEFINE_VECT_BRDCAST_DISPATCH_RECEIVERS(_cb_header, _cb_dispatch, \ _stride) \ DEFINE_BRDCAST_DISPATCH_RECEIVERS(_cb_header, _cb_dispatch, _stride) \ _cb_header(4) { \ const ptrdiff_t* stride = _stride; \ if (!stride[0] && stride[1] && !stride[2] && stride[3]) { \ return _cb_dispatch(4, BCAST_1010); \ } \ _cb_dispatch(4, BCAST_OTHER); \ } template class UserOpInvokerBinaryIByteHelper { private: bool m_invoked; size_t m_rw_size; const ElemwiseOpParamN<2>& m_param; cudaStream_t m_stream; const Op& m_op; using vect_type = typename VectTypeTrait::vect_type; static const size_t packed_size = VectTypeTrait::packed_size; bool try_vect_load_store() { auto try_last_contig_or_scalar = [](const TensorLayout& layout) { return (layout.stride[layout.ndim - 1] == 1 && layout[layout.ndim - 1] % packed_size == 0) || (layout.ndim == 1 && layout.stride[0] == 0); }; for (int i = 0; i < 2; ++i) { if (!try_last_contig_or_scalar(m_param[i].layout)) return false; } m_rw_size /= packed_size; dispatch0_vect(); return true; } bool try_vect_load_store_contiguous() { auto try_contig = [](const TensorLayout& layout) { return (layout.is_contiguous()); }; for (int i = 0; i < 2; ++i) { if (!try_contig(m_param[i].layout)) return false; } m_rw_size = DIVUP(m_rw_size, packed_size); dispatch_contiguous(); return true; } void dispatch0() { switch (m_param[0].layout.ndim) { #define cb(ndim) \ case ndim: \ return dispatch1_##ndim(); MEGDNN_FOREACH_TENSOR_NDIM_SMALL(cb) #undef cb } fallback(); } void dispatch0_vect() { switch (m_param[0].layout.ndim) { #define cb(ndim) \ case ndim: \ return dispatch1_vect_##ndim(); MEGDNN_FOREACH_TENSOR_NDIM_SMALL(cb) #undef cb case 4: return dispatch1_vect_4(); } fallback(); } void dispatch_contiguous() { m_invoked = true; typedef ParamVectVisitor<1, ctype, BCAST_OTHER> PVis; typedef OpCallerUniform Caller; size_t size = m_rw_size; int grid_size, block_size; void (*fptr)(Caller, uint32_t) = cuda_kern; get_launch_spec(reinterpret_cast(fptr), size, &grid_size, &block_size); Caller caller; caller.op = m_op; for (int i = 0; i < 2; ++i) caller.par[i].host_init(m_param[i], grid_size, block_size); (*fptr)<<>>(caller, m_param.size); after_kernel_launch(); } void fallback() { megdnn_assert(!m_invoked); UserOpInvokerToSameNdim(m_param, m_stream, m_op); m_invoked = true; } #define cb_header(ndim) void dispatch1_##ndim() #define cb_dispatch(ndim, brdcast_mask) \ dispatch2>() DEFINE_BRDCAST_DISPATCH_RECEIVERS(cb_header, cb_dispatch, m_param[0].layout.stride) #undef cb_header #undef cb_dispatch #define cb_header(ndim) void dispatch1_vect_##ndim() #define cb_dispatch(ndim, brdcast_mask) \ dispatch2_vect>() DEFINE_VECT_BRDCAST_DISPATCH_RECEIVERS(cb_header, cb_dispatch, m_param[0].layout.stride) #undef cb_header #undef cb_dispatch template void dispatch2() { switch (m_param[1].layout.ndim) { #define cb(ndim) \ case ndim: \ return dispatch3_##ndim(); MEGDNN_FOREACH_TENSOR_NDIM_SMALL(cb) #undef cb } fallback(); } template void dispatch2_vect() { switch (m_param[1].layout.ndim) { #define cb(ndim) \ case ndim: \ return dispatch3_vect_##ndim(); MEGDNN_FOREACH_TENSOR_NDIM_SMALL(cb) #undef cb case 4: return dispatch3_vect_4(); } fallback(); } #define cb_header(ndim) \ template \ void dispatch3_##ndim() #define cb_dispatch(ndim, brdcast_mask) \ do_run>() DEFINE_BRDCAST_DISPATCH_RECEIVERS(cb_header, cb_dispatch, m_param[1].layout.stride) #undef cb_header #undef cb_dispatch #define cb_header(ndim) \ template \ void dispatch3_vect_##ndim() #define cb_dispatch(ndim, brdcast_mask) \ do_run>() DEFINE_VECT_BRDCAST_DISPATCH_RECEIVERS(cb_header, cb_dispatch, m_param[1].layout.stride) #undef cb_header #undef cb_dispatch template void do_run() { megdnn_assert(!m_invoked); m_invoked = true; typedef OpCallerBinary Caller; int grid_size, block_size; void (*fptr)(Caller, uint32_t) = cuda_kern; size_t size = m_rw_size; get_launch_spec(reinterpret_cast(fptr), size, &grid_size, &block_size); Caller caller; caller.op = m_op; caller.par0.host_init(m_param[0], grid_size, block_size); caller.par1.host_init(m_param[1], grid_size, block_size); (*fptr)<<>>(caller, size); after_kernel_launch(); } public: UserOpInvokerBinaryIByteHelper(const ElemwiseOpParamN<2>& param, cudaStream_t stream, const Op& op) : m_rw_size(param.size), m_param(param), m_stream(stream), m_op(op) { m_invoked = false; if (!try_vect_load_store_contiguous() && !try_vect_load_store()) { dispatch0(); } megdnn_assert(m_invoked); } }; #define INST_DT_IBYTE(ctype) \ template \ class UserOpInvoker \ : public UserOpInvokerBinaryIByteHelper { \ using Super = UserOpInvokerBinaryIByteHelper; \ \ public: \ UserOpInvoker(const ElemwiseOpParamN<2>& param, cudaStream_t stream, \ const Op& op) \ : Super{param, stream, op} {} \ } INST_DT_IBYTE(dt_int8); INST_DT_IBYTE(dt_uint8); INST_DT_IBYTE(dt_qint8); INST_DT_IBYTE(dt_quint8); #undef INST_DT_IBYTE #endif #undef DEFINE_BRDCAST_DISPATCH_RECEIVERS #undef DEFINE_VECT_BRDCAST_DISPATCH_RECEIVERS /* f}}} */ #undef devfunc } // namespace elemwise_intl /*! * \brief general element-wise kernel launcher * * \tparam arity number of params for the operator * \param param param values for the operator; must have been initialized (i.e. * by calling ElemwiseOpParamN::init_from_given_tensor). The params * can have arbitrary layouts, as long as they share the same total number * of elements. * \param op callable with a signature compatible with * `void op(uint32_t idx, ctype& param0, ..., ctype& param[arity - 1])` * if arity == 0, there is only an `idx` input * if ctype=dt_int8, dt_uint8, dt_qint8, dt_quint8, a signature compatible * with `void op(uint32_t idx, vect_type& param0, ..., ctype& param[arity - 1])` * should be implemented */ template void run_elemwise(const ElemwiseOpParamN& param, cudaStream_t stream, const Op& op = Op()); #if MEGDNN_CC_CUDA template void run_elemwise(const ElemwiseOpParamN& param, cudaStream_t stream, const Op& op) { param.assert_initialized(); elemwise_intl::UserOpInvoker(param, stream, op); } /*! * \brief explicit instantialization of run_elemwise for given template params; * used in .cu files, so corresponding run_elemwise can be called from .cpp */ #define INST_RUN_ELEMWISE(Op, ctype, arity) \ template void run_elemwise( \ const ElemwiseOpParamN&, cudaStream_t, const Op&) #endif } // namespace cuda } // namespace megdnn // vim: ft=cpp syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}