# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import inspect import io import itertools from tempfile import mkstemp import numpy as np import pytest import megengine.core.tensor.megbrain_graph as G import megengine.functional as F import megengine.optimizer as optim import megengine.utils.comp_graph_tools as cgtools from megengine import Parameter, tensor from megengine.autodiff import GradManager from megengine.core._trace_option import set_symbolic_shape from megengine.core.ops import builtin as ops from megengine.core.ops.builtin import Elemwise from megengine.core.tensor.utils import isscalar from megengine.functional import exp, log from megengine.jit import GraphOptimizationConfig, exclude_from_trace, trace from megengine.module import Module from megengine.random import normal, uniform from megengine.utils.naming import AutoNaming @pytest.mark.parametrize("trace_mode", [False, True]) @pytest.mark.parametrize("return_mode", ["Value", "Tuple", "List", "Dict"]) def test_trace(trace_mode, return_mode): @trace(symbolic=trace_mode) def f(x): if return_mode == "Tuple": return (-x,) elif return_mode == "List": return [-x] elif return_mode == "Dict": return {"neg": -x} else: return -x def get_numpy(y): if return_mode == "Tuple" or return_mode == "List": return y[0].numpy() elif return_mode == "Dict": return y["neg"].numpy() return y.numpy() x = tensor([1]) y = get_numpy(f(x)) for i in range(3): np.testing.assert_equal(get_numpy(f(x)), y) def test_output_copy_trace(): class Simple(Module): def __init__(self): super().__init__() self.a = Parameter([1.0], dtype=np.float32) def forward(self, x): x = x * self.a # will result into a copy of output in grad x = F.exp(x) return x ys = {False: [], True: []} for symbolic in [False, True]: net = Simple() gm = GradManager().attach(net.parameters()) opt = optim.SGD(net.parameters(), 1e-3, momentum=0.9) data = tensor(np.arange(4).reshape(2, 2), dtype="float32") @trace(symbolic=symbolic) def train_func(d): with gm: loss = net(d) gm.backward(loss) opt.step().clear_grad() return loss for i in range(3): y = train_func(data).numpy() ys[symbolic].append(y) for i in range(3): np.testing.assert_equal(ys[False][i], ys[True][i]) @pytest.mark.parametrize("trace_mode", [False, True]) def test_tensor_detach(trace_mode): @trace(symbolic=True) def f(x): y = x.detach() ** 2 z = y.detach() + 1 return z.detach() x = tensor([1, 2, 3, 4]) for _ in range(3): f(x).numpy() @pytest.mark.parametrize("trace_mode", [False, True]) def test_exclude_from_trace(trace_mode): @trace(symbolic=trace_mode) def f(x): x = -x with exclude_from_trace(): if i % 2: x = -x x = -x return x x = tensor([1]) for i in range(3): y = f(x).numpy() np.testing.assert_equal(f(x).numpy(), y) @pytest.mark.parametrize("trace_mode", [False, True]) def test_elemwise_fuse(trace_mode): # explicitly declare opt_level as 2 @trace(symbolic=trace_mode, opt_level=2) def f(a, b): base = 0 c = b - a _, idx = F.topk(c, 3) # internally, biased_idx will be idx as gopt will ignore the addition biased_idx = base + idx return biased_idx a = tensor(np.ones((7, 2)), dtype=np.int32) b = tensor(2 * np.ones((7, 2)), dtype=np.float32) for i in range(3): y = f(a, b) y.numpy() @pytest.mark.parametrize("trace_mode", [False, True]) def test_elemwise_fuse_in_grad(trace_mode): w = Parameter(np.ones([4, 6]), dtype="float32") gm = GradManager().attach(w) opt = optim.SGD([w], lr=0.01, momentum=0.9, weight_decay=5e-4) # explicitly declare opt_level as 2 @trace(symbolic=trace_mode, opt_level=2) def f(): with gm: wm = F.sum(w ** 2, axis=1) ** 0.5 loss = wm.mean() gm.backward(loss) opt.step().clear_grad() return loss for i in range(3): y = f() y.numpy() def test_print_in_trace(): for symbolic in [False]: # cannot read value in symbolic mode @trace(symbolic=symbolic) def f(x): nonlocal buf x = -x buf = x.numpy() x = -x return x buf = None x = tensor([1]) for i in range(3): y = f(x).numpy() z = buf buf = None np.testing.assert_equal(f(x).numpy(), y) np.testing.assert_equal(z, buf) def test_dump(): @trace(symbolic=True, capture_as_const=True) def f(a, b): return a + b # prevent from remaining scope from exception test AutoNaming.clear() a = tensor([2]) b = tensor([4]) y = f(a, b).numpy() for i in range(3): np.testing.assert_equal(f(a, b).numpy(), y) file = io.BytesIO() dump_info = f.dump(file) assert dump_info.nr_opr == 3 np.testing.assert_equal(dump_info.inputs, ["arg_0", "arg_1"]) np.testing.assert_equal(dump_info.outputs, ["ADD"]) file.seek(0) infer_cg = cgtools.GraphInference(file) result = list((infer_cg.run(a, b)).values())[0] np.testing.assert_equal(result[0], y) def test_capture_dump(): a = tensor([2]) @trace(symbolic=True, capture_as_const=True) def f(x): return x * a x = tensor([3]) y = f(x).numpy() for i in range(3): np.testing.assert_equal(f(x).numpy(), y) file = io.BytesIO() f.dump(file) file.seek(0) infer_cg = cgtools.GraphInference(file) result = list((infer_cg.run(x)).values())[0] np.testing.assert_equal(result[0], y) def test_dump_volatile(): p = tensor([2]) @trace(symbolic=True, capture_as_const=True) def f(x): return x * p x = tensor([3]) y = f(x).numpy() for i in range(3): np.testing.assert_equal(f(x).numpy(), y) file = io.BytesIO() f.dump(file, optimize_for_inference=False) file.seek(0) (out,) = G.load_graph(file).output_vars_list assert ( cgtools.get_owner_opr_type(cgtools.get_owner_opr_inputs(out)[1]) == "ImmutableTensor" ) def test_dump_backward_graph(): x0 = tensor(np.random.randn(3, 4)) x1 = tensor(np.random.randn(3, 4)) gm = GradManager().attach(x0) @trace(symbolic=True, capture_as_const=True) def f(x0, x1): with gm: y = x0 * x1 gm.backward(y, F.ones_like(y)) dx0 = x0.grad return y, dx0 y, dx0 = f(x0, x1) np.testing.assert_equal(dx0.numpy(), x1) file = io.BytesIO() f.dump(file, optimize_for_inference=False) file.seek(0) infer_cg = cgtools.GraphInference(file) results = list((infer_cg.run(x0, x1)).values()) np.testing.assert_equal(results[0], y) np.testing.assert_equal(results[1], dx0) def test_dump_with_testcase(): @trace(symbolic=True, capture_as_const=True) def f(x): return exp(x) f(tensor(1.0)) file = io.BytesIO() f.dump(file, input_data=["#rand(0, 255, 1)"]) @pytest.mark.parametrize("trace_mode", [False, True]) def test_trace_profiler(trace_mode): @trace(symbolic=trace_mode, profiling=True) def f(x): return -x x = tensor([1]) y = f(x).numpy() f(x) f(x) # XXX: has to run twice out = f.get_profile() assert out.get("profiler") def test_goptions(): @trace(symbolic=True, opt_level=0, capture_as_const=True) def f(x): # directly return x / x will not trigger gopt # since there's no way to tell the two x are the same y = 2.0 * x return y / y @trace(symbolic=True, opt_level=1, capture_as_const=True) def g(x): y = 2.0 * x return y / y d = tensor(0.0) assert not np.isfinite(f(d).numpy()) np.testing.assert_equal(g(d).numpy().item(), 1.0) def test_goptions_log_sum_exp(): @trace(symbolic=True, opt_level=0, capture_as_const=True) def f(x, y): return log(exp(x) + exp(y)) @trace(symbolic=True, opt_level=1, capture_as_const=True) def g(x, y): return log(exp(x) + exp(y)) val = 1.0e4 d = tensor(val) o = tensor(0.0) assert not np.isfinite(f(d, o).numpy()) np.testing.assert_almost_equal(g(d, o), val) def test_goptions_log_exp(): @trace(symbolic=True, opt_level=0, capture_as_const=True) def f(x): return log(exp(x)) @trace(symbolic=True, opt_level=1, capture_as_const=True) def g(x): return log(exp(x)) f(tensor(1.0)) _, out = mkstemp() f.dump(out, optimize_for_inference=False) outputs = G.load_graph(out).output_vars_list oprs_1 = cgtools.get_oprs_seq(outputs) g(tensor(1.0)) g.dump(out, optimize_for_inference=False) outputs = G.load_graph(out).output_vars_list oprs_2 = cgtools.get_oprs_seq(outputs) assert len(oprs_1) - len(oprs_2) == 2 def test_optimize_for_inference(): @trace(symbolic=True, capture_as_const=True) def f(x): return exp(x) _, out = mkstemp() f(tensor(5.0)) f.dump(out, enable_io16xc32=True) res = G.load_graph(out) computing_input = res.output_vars_list[0].owner.inputs[0] assert computing_input.dtype == np.float16 def test_optimize_for_inference_broadcast(): a = tensor(np.ones(1, dtype=np.float32)) @trace(capture_as_const=True, symbolic_shape=True) def f(): return a._broadcast(tensor([1, 10], dtype=np.int32)) f() f.dump(io.BytesIO()) def test_trace_cvt_bool(): x = tensor([0], dtype=np.int32) @trace(symbolic=True) def f(x): a = x.shape b = a[0] assert isscalar(b) return b == 0 for i in range(3): np.testing.assert_equal(f(x).numpy(), False) @pytest.mark.parametrize("trace_mode", [False, True]) def test_trace_reshape(trace_mode): x1 = tensor(np.random.randn(2, 10, 10)) x2 = tensor(np.random.randn(4, 10, 10)) x3 = tensor(np.random.randn(8, 10, 10)) @trace(symbolic=trace_mode, capture_as_const=True) def f(x): y = x.reshape(x.shape[0], 100) return y f(x1) f(x2) f(x3) def test_trace_topk(): x = tensor([5, 2, 7, 1, 0, 3, 2]) @trace(symbolic=True) def f(x): y = F.topk(x, 3) np.testing.assert_equal(y[0].shape.numpy(), np.array([3,])) return y for i in range(3): f(x) def test_trace_warp_perspective(): inp_shape = (1, 1, 4, 4) x = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape)) M_shape = (1, 3, 3) M = tensor( np.array( [[1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [0.0, 0.0, 1.0]], dtype=np.float32 ).reshape(M_shape) ) @trace(symbolic=True) def f(x, M): out = F.vision.warp_perspective(x, M, (2, 2)) np.testing.assert_equal(out.shape.numpy(), np.array([1, 1, 2, 2])) return out for i in range(3): f(x, M) def test_raise_on_trace(): step_count = 0 catch_count = 0 bad_step = 10 class CatchMe(Exception): pass a = tensor([1, 2, 3, 4]) b = tensor([5, 6, 7, 8]) c = tensor([9, 0, 1, 2]) @trace def add_abc(a, b, c): ps = a + b result = ps + c if step_count == bad_step: raise CatchMe("catch me") return result for i in range(100): try: d = add_abc(a, b, c) except CatchMe as e: catch_count += 1 else: np.testing.assert_equal(d.numpy(), (a + b + c).numpy()) step_count += 1 assert catch_count == 1 @pytest.mark.parametrize("trace_mode", [False, True]) def test_trace_broadcast(trace_mode): x1 = tensor(np.random.randn(3, 1, 1)) x2 = tensor(np.random.randn(1, 4, 1)) x3 = tensor(np.random.randn(1, 1, 5)) @trace(symbolic=trace_mode, capture_as_const=True) def f(x): y = F.broadcast_to(x, (3, 4, 5)) return y f(x1) f(x2) f(x3) def test_trace_nms(): def make_inputs(n): boxes = np.zeros((n, 4)) boxes[:, :2] = np.random.rand(n, 2) * 100 boxes[:, 2:] = np.random.rand(n, 2) * 100 + 100 scores = np.random.rand(n) return tensor(boxes), tensor(scores) @trace(symbolic=False) def f(boxes, scores): # with tracing, max_output must be specified results = F.vision.nms(boxes, scores=scores, iou_thresh=0.5, max_output=20) # without tracing, max output can be inferred inside nms with exclude_from_trace(): _ = F.vision.nms(boxes, scores=scores, iou_thresh=0.5) return results f(*make_inputs(10)) f(*make_inputs(20)) f(*make_inputs(30)) def test_trace_valid_broadcast(): x1 = tensor(np.random.randn(1, 1)) x2 = tensor(np.random.randn(1, 2)) shape = (tensor([2]), tensor([2])) @trace(symbolic=False) def f(x, shape): y = F.broadcast_to(x, shape) return y f(x1, shape) f(x2, shape) @pytest.mark.parametrize("trace_mode", [False, True]) def test_clip(trace_mode): x = tensor(np.random.randn(10, 10)) @trace(symbolic=trace_mode) def f(x, lower, upper): y = F.clip(x, lower, upper) return y for i in range(3): f(x, tensor([0]), tensor([1])) for i in range(3): f(x, tensor([5]), tensor([4])) # test returning noncontiguous tensor from trace def test_slice(): @trace def f(x): return x[:, 1::2] x = F.arange(8).reshape(2, 4) f(x) y = f(x) np.testing.assert_array_equal(y.numpy(), x.numpy()[:, 1::2]) y + y @pytest.mark.parametrize("shape_mode", [False, True]) def test_random(shape_mode): def run_test(op): @trace(symbolic=True, symbolic_shape=shape_mode) def f(): out = op(size=[10, 10]) out_shape = out.shape assert out_shape is not None if not isinstance(out_shape, tuple): assert out.shape.numpy() is not None return out for _ in range(3): f() run_test(uniform) run_test(normal) @pytest.mark.parametrize("shape_mode", [False, True]) def test_trace_advance_indexing(shape_mode): funcs = [ lambda x, i: x[i], lambda x, i, j: x[i, j], lambda x, i, j: x[i, :, j, ...], lambda x, start, end: x[start:end], lambda x, start, end: x[:, 0, start:end, ..., 1], lambda x, vec: x[vec], lambda x, vec: x[vec, ..., 0, 1:3], lambda x, vec: x[vec, vec[0], vec[1]], # lambda x, i, start, end, vec: x[i, ..., :, vec, start:end], # FIXME lambda x, mask: x[mask], ] inputs = { "x": np.random.randn(5, 5, 5, 5, 5).astype("float32"), "i": 4, "j": 2, "start": 1, "end": 3, "vec": [1, 2, 3], "mask": np.random.randn(5, 5, 5, 5, 5) >= 0, } for f in funcs: sig = inspect.signature(f) param_names = list(sig._parameters.keys()) params = {} params_np = {} f_traced = trace(f, symbolic=False, symbolic_shape=shape_mode) for name in param_names: params[name] = tensor(inputs[name]) params_np[name] = inputs[name] expected = f(**params_np) result_imperative = f(**params) np.testing.assert_equal(expected, result_imperative.numpy()) for _ in range(3): result_trace = f_traced(**params) np.testing.assert_equal(expected, result_trace.numpy()) @pytest.mark.require_ngpu(1) # nvrtc backend def test_trace_jit_config(): def run(fuse_dimshuffle, fuse_reduce): config = GraphOptimizationConfig() config.jit_fuse_dimshuffle = fuse_dimshuffle config.jit_fuse_reduce = fuse_reduce # set opt_level = 1 to avoid fusing dimshuffle and reduce at the same time @trace(opt_level=1, graph_opt_config=config) def func(x): return x + 1 x = tensor(2) y = func(x) func._compile() options = func._graph.options mapping = {None: 0, False: 1, True: 2} assert options.graph_opt.jit == 0 assert options.graph_opt.jit_config.fuse_dimshuffle == mapping[fuse_dimshuffle] assert options.graph_opt.jit_config.fuse_reduce == mapping[fuse_reduce] for fuse_dimshuffle in [None, False, True]: for fuse_reduce in [None, False, True]: run(fuse_dimshuffle, fuse_reduce)