# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import threading import numpy as np from .base import * from .struct import * from .tensor import * class TensorBatchCollector: """ this is a tensor utils to collect subtensor in batch continuous """ def __init__( self, shape, dtype=LiteDataType.LITE_INT8, device_type=LiteDeviceType.LITE_CUDA, device_id=0, is_pinned_host=False, tensor=None, ): self._mutex = threading.Lock() self.dev_type = device_type self.is_pinned_host = is_pinned_host self.dev_id = 0 self.shape = shape self.dtype = LiteLayout(dtype=dtype).data_type self._free_list = list(range(self.shape[0])) if tensor is not None: assert ( tensor.layout.shapes[0 : tensor.layout.ndim] == shape ), "The tensor set to TensorBatchCollector is not right." self._tensor = tensor self.dtype = tensor.layout.data_type self.device_type = tensor.device_type self.device_id = tensor.device_type else: self._tensor = LiteTensor( LiteLayout(shape, dtype), device_type, device_id, is_pinned_host ) def collect_id(self, array, batch_id): if isinstance(array, np.ndarray): shape = array.shape assert list(shape) == self.shape[1:] in_dtype = ctype_to_lite_dtypes[np.ctypeslib.as_ctypes_type(array.dtype)] assert in_dtype == self.dtype # get the batch index with self._mutex: if batch_id in self._free_list: self._free_list.remove(batch_id) # get the subtensor subtensor = self._tensor.slice([batch_id], [batch_id + 1]) if subtensor.device_type == LiteDeviceType.LITE_CPU: subtensor.set_data_by_copy(array) else: pinned_tensor = LiteTensor( subtensor.layout, self.dev_type, self.dev_id, True ) pinned_tensor.set_data_by_share(array) subtensor.copy_from(pinned_tensor) else: assert isinstance(array, LiteTensor) ndim = array.layout.ndim shape = list(array.layout.shapes)[0:ndim] assert list(shape) == self.shape[1:] in_dtype = array.layout.data_type assert in_dtype == self.dtype # get the batch index with self._mutex: if batch_id in self._free_list: self._free_list.remove(batch_id) # get the subtensor subtensor = self._tensor.slice([batch_id], [batch_id + 1]) subtensor.copy_from(array) return batch_id def collect(self, array): with self._mutex: if len(self._free_list) == 0: return -1 idx = self._free_list.pop(0) return self.collect_id(array, idx) def collect_by_ctypes(self, data, length): """ collect with ctypes data input """ with self._mutex: if len(self._free_list) == 0: return -1 idx = self._free_list.pop(0) # get the subtensor subtensor = self._tensor.slice([idx], [idx + 1]) if subtensor.device_type == LiteDeviceType.LITE_CPU: subtensor.set_data_by_copy(data, length) else: pinned_tensor = LiteTensor( subtensor.layout, self.dev_type, self.dev_id, True ) pinned_tensor.set_data_by_share(data, length) subtensor.copy_from(pinned_tensor) def free(self, indexes): with self._mutex: self._free_list.extend(indexes) def get(self): return self._tensor def to_numpy(self): return self._tensor.to_numpy()