/** * \file example/basic_c_interface.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ #include "../example.h" #include "misc.h" #if LITE_BUILD_WITH_MGE #include "lite-c/global_c.h" #include "lite-c/network_c.h" #include "lite-c/tensor_c.h" #include #define LITE_CAPI_CHECK(_expr) \ do { \ int _ret = (_expr); \ if (_ret) { \ LITE_THROW(LITE_get_last_error()); \ } \ } while (0) bool basic_c_interface(const lite::example::Args& args) { std::string network_path = args.model_path; std::string input_path = args.input_path; //! read input data to lite::tensor auto src_tensor = lite::example::parse_npy(input_path); void* src_ptr = src_tensor->get_memory_ptr(); //! create and load the network LiteNetwork c_network; LITE_CAPI_CHECK( LITE_make_network(&c_network, *default_config(), *default_network_io())); LITE_CAPI_CHECK(LITE_load_model_from_path(c_network, network_path.c_str())); //! set input data to input tensor LiteTensor c_input_tensor; LITE_CAPI_CHECK( LITE_get_io_tensor(c_network, "data", LITE_IO, &c_input_tensor)); void* dst_ptr; size_t length_in_byte; LITE_CAPI_CHECK(LITE_get_tensor_total_size_in_byte(c_input_tensor, &length_in_byte)); LITE_CAPI_CHECK(LITE_get_tensor_memory(c_input_tensor, &dst_ptr)); //! copy or forward data to network memcpy(dst_ptr, src_ptr, length_in_byte); //! forward LITE_CAPI_CHECK(LITE_forward(c_network)); LITE_CAPI_CHECK(LITE_wait(c_network)); //! get the output data or read tensor data const char* output_name; LiteTensor c_output_tensor; //! get the first output tensor name LITE_CAPI_CHECK(LITE_get_output_name(c_network, 0, &output_name)); LITE_CAPI_CHECK(LITE_get_io_tensor(c_network, output_name, LITE_IO, &c_output_tensor)); void* output_ptr; size_t length_output_in_byte; LITE_CAPI_CHECK(LITE_get_tensor_memory(c_output_tensor, &output_ptr)); LITE_CAPI_CHECK(LITE_get_tensor_total_size_in_byte(c_output_tensor, &length_output_in_byte)); size_t out_length = length_output_in_byte / sizeof(float); printf("length=%zu\n", out_length); float max = -1.0f; float sum = 0.0f; for (size_t i = 0; i < out_length; i++) { float data = static_cast(output_ptr)[i]; sum += data; if (max < data) max = data; } printf("max=%e, sum=%e\n", max, sum); return true; } bool device_io_c_interface(const lite::example::Args& args) { std::string network_path = args.model_path; std::string input_path = args.input_path; //! read input data to lite::tensor auto src_tensor = lite::example::parse_npy(input_path); void* src_ptr = src_tensor->get_memory_ptr(); size_t length_read_in = src_tensor->get_tensor_total_size_in_byte(); //! create and load the network LiteNetwork c_network; LITE_CAPI_CHECK( LITE_make_network(&c_network, *default_config(), *default_network_io())); LITE_CAPI_CHECK(LITE_load_model_from_path(c_network, network_path.c_str())); //! set input data to input tensor LiteTensor c_input_tensor; size_t length_tensor_in; LITE_CAPI_CHECK( LITE_get_io_tensor(c_network, "data", LITE_IO, &c_input_tensor)); LITE_CAPI_CHECK(LITE_get_tensor_total_size_in_byte(c_input_tensor, &length_tensor_in)); if (length_read_in != length_tensor_in) { LITE_THROW("The input data size is not match the network input tensro " "size,\n"); } LITE_CAPI_CHECK(LITE_reset_tensor_memory(c_input_tensor, src_ptr, length_tensor_in)); //! reset the output tensor memory with user allocated memory size_t out_length = 1000; LiteLayout output_layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT}; std::shared_ptr ptr(new float[out_length], [](float* ptr) { delete[] ptr; }); const char* output_name; LiteTensor c_output_tensor; LITE_CAPI_CHECK(LITE_get_output_name(c_network, 0, &output_name)); LITE_CAPI_CHECK(LITE_get_io_tensor(c_network, output_name, LITE_IO, &c_output_tensor)); LITE_CAPI_CHECK( LITE_reset_tensor(c_output_tensor, output_layout, ptr.get())); //! forward LITE_CAPI_CHECK(LITE_forward(c_network)); LITE_CAPI_CHECK(LITE_wait(c_network)); printf("length=%zu\n", out_length); float max = -1.0f; float sum = 0.0f; void* out_data = ptr.get(); for (size_t i = 0; i < out_length; i++) { float data = static_cast(out_data)[i]; sum += data; if (max < data) max = data; } printf("max=%e, sum=%e\n", max, sum); return true; } namespace { volatile bool finished = false; int async_callback(void) { #if !__DEPLOY_ON_XP_SP2__ std::cout << "worker thread_id:" << std::this_thread::get_id() << std::endl; #endif finished = true; return 0; } } // namespace bool async_c_interface(const lite::example::Args& args) { std::string network_path = args.model_path; std::string input_path = args.input_path; //! read input data to lite::tensor auto src_tensor = lite::example::parse_npy(input_path); void* src_ptr = src_tensor->get_memory_ptr(); LiteNetwork c_network; LiteConfig config = *default_config(); config.options.var_sanity_check_first_run = false; LITE_CAPI_CHECK(LITE_make_network(&c_network, config, *default_network_io())); LITE_CAPI_CHECK(LITE_load_model_from_path(c_network, network_path.c_str())); //! set input data to input tensor LiteTensor c_input_tensor; size_t length_tensor_in; LITE_CAPI_CHECK( LITE_get_io_tensor(c_network, "data", LITE_IO, &c_input_tensor)); LITE_CAPI_CHECK(LITE_get_tensor_total_size_in_byte(c_input_tensor, &length_tensor_in)); LITE_CAPI_CHECK(LITE_reset_tensor_memory(c_input_tensor, src_ptr, length_tensor_in)); #if !__DEPLOY_ON_XP_SP2__ std::cout << "user thread_id:" << std::this_thread::get_id() << std::endl; #endif LITE_CAPI_CHECK(LITE_set_async_callback(c_network, async_callback)); //! forward LITE_CAPI_CHECK(LITE_forward(c_network)); size_t count = 0; while (finished == false) { count++; } printf("The count is %zu\n", count); finished = false; //! get the output data or read tensor data const char* output_name; LiteTensor c_output_tensor; //! get the first output tensor name LITE_CAPI_CHECK(LITE_get_output_name(c_network, 0, &output_name)); LITE_CAPI_CHECK(LITE_get_io_tensor(c_network, output_name, LITE_IO, &c_output_tensor)); void* output_ptr; size_t length_output_in_byte; LITE_CAPI_CHECK(LITE_get_tensor_memory(c_output_tensor, &output_ptr)); LITE_CAPI_CHECK(LITE_get_tensor_total_size_in_byte(c_output_tensor, &length_output_in_byte)); size_t out_length = length_output_in_byte / sizeof(float); printf("length=%zu\n", out_length); float max = -1.0f; float sum = 0.0f; for (size_t i = 0; i < out_length; i++) { float data = static_cast(output_ptr)[i]; sum += data; if (max < data) max = data; } printf("max=%e, sum=%e\n", max, sum); return true; } #endif // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}