/** * \file src/jit/test/fusion.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2020 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ #include "./helper.h" #include "megbrain_build_config.h" #include "megbrain/gopt/framework.h" #include "megbrain/gopt/misc.h" #include "megbrain/graph/cg.h" #include "megbrain/jit/ast_c.h" #include "megbrain/jit/executor_opr.h" #include "megbrain/jit/fusion_pass.h" #include "megbrain/opr/basic_arith_wrapper.h" #include "megbrain/opr/blas.h" #include "megbrain/opr/tensor_manip.h" #include "megbrain/opr/utility.h" #include "megbrain/test/autocheck.h" #include "megbrain/test/helper.h" #include "megbrain/opr/dnn/convolution.h" #if MGB_JIT using namespace mgb; using namespace jit; #define FOREACH_CASE(cb) \ cb(basic) cb(shape_change) cb(large_num_inps) cb(simple_exp) \ cb(complex_exp) cb(exp_pow) cb(cache) cb(all_oprs) \ cb(expand_jit_executor) cb(multi_device) cb(multi_shape) \ cb(non_contig) cb(visit_complexity) cb(imm_scalar) \ cb(jit_grad) cb(concat_input) cb(special_graph_input) namespace { #define def_tag(x) \ struct x {}; FOREACH_CASE(def_tag) #undef def_tag #define t(n) n, using test_types = ::testing::Types; #undef t template void run(Backend backend, CompNode cn); template size_t find_opr_num(SymbolVar endpoint) { size_t opr_num = 0; auto cb = [&opr_num](cg::OperatorNodeBase* opr) { if (opr->same_type()) { opr_num++; } }; cg::DepOprIter{cb}.add(endpoint.node()->owner_opr()); return opr_num; } template SmallVector find_oprs(SymbolVar endpoint) { SmallVector res; auto cb = [&res](cg::OperatorNodeBase* opr) { if (opr->same_type()) { auto ptr = &(opr->cast_final_safe()); res.push_back(ptr); } }; cg::DepOprIter{cb}.add(endpoint.node()->owner_opr()); return res; } template SmallVector find_oprs(cg::AsyncExecutable& func) { SmallVector res; auto cb = [&res](cg::OperatorNodeBase* opr) { if (opr->same_type()) { auto ptr = &(opr->cast_final_safe()); res.push_back(ptr); } return true; }; func.iter_opr_seq(cb); return res; } //! make a pair of functions with and without JIT optimization std::pair, std::unique_ptr> make_func_pair(HostTensorND& dst0, HostTensorND& dst1, thin_function make_dst, uint8_t jit_level) { auto g0 = ComputingGraph::make(); g0->options().graph_opt_level = 0; auto f0 = g0->compile({make_callback_copy(make_dst(*g0), dst0)}); auto g1 = ComputingGraph::make(); g1->options().graph_opt_level = 3; g1->options().graph_opt.jit = jit_level; auto f1 = g1->compile({make_callback_copy(make_dst(*g1), dst1)}); EXPECT_FALSE(find_oprs(*f1).empty()); return {std::move(f0), std::move(f1)}; } template <> void run(Backend, CompNode) {} template <> void run(Backend backend, CompNode cn) { set_backend(backend); HostTensorGenerator<> gen; auto host_x0 = gen({3, 3}, cn), host_x1 = gen({3, 1}, cn), host_x2 = gen({1, 1}, cn), host_x3 = gen({3, 1}, cn); auto make_dst = [&](ComputingGraph& graph) { auto a = opr::Host2DeviceCopy::make(graph, host_x0), b = opr::Host2DeviceCopy::make(graph, host_x1), c = opr::Host2DeviceCopy::make(graph, host_x2), d = opr::Host2DeviceCopy::make(graph, host_x3); return a * b + c * a + d + d + d; }; HostTensorND host_z1, host_z2; auto funcs = make_func_pair(host_z1, host_z2, make_dst, 2); funcs.first->execute(); funcs.second->execute(); MGB_ASSERT_TENSOR_EQ(host_z1, host_z2); auto jits = find_oprs(*funcs.second); ASSERT_EQ(2u, jits.size()); // only one broadcast is allowed in JIT fusion ASSERT_EQ(1u, jits[0]->input().size()); ASSERT_EQ(4u, jits[1]->input().size()); } template <> void run(Backend backend, CompNode cn) { set_backend(backend); HostTensorGenerator<> gen; auto host_x0 = gen({3, 3}, cn), host_x1 = gen({3, 1}, cn), host_x2 = gen({1, 1}, cn), host_x3 = gen({1, 3}, cn); auto run_gen = [&](size_t n, bool dim = false, bool swap = false) { if (dim) { host_x0->copy_from(*gen({n, n, 3}, cn)); host_x1->copy_from(*gen({n, 1, 1}, cn)); host_x2->copy_from(*gen({1, 1, 3}, cn)); host_x3->copy_from(*gen({1, n, 1}, cn)); } else { host_x0->copy_from(*gen({n, n}, cn)); host_x1->copy_from(*gen({n, 1}, cn)); host_x2->copy_from(*gen({1, 1}, cn)); host_x3->copy_from(*gen({1, n}, cn)); } if (swap) { std::swap(*host_x1, *host_x3); } }; using JITOprArr = std::array; auto make_func = [&](HostTensorND& out, JITOprArr* jit) { auto graph = ComputingGraph::make(); graph->options().graph_opt_level = 0; auto a = opr::Host2DeviceCopy::make(*graph, host_x0), b = opr::Host2DeviceCopy::make(*graph, host_x1), c = opr::Host2DeviceCopy::make(*graph, host_x2), d = opr::Host2DeviceCopy::make(*graph, host_x3); auto y = opr::abs(a) * (b + c) * d - (b + c) * c * b; if (jit) { graph->options().graph_opt_level = 3; } auto func = graph->compile({make_callback_copy(y, out)}); if (jit) { unpack_vector(find_oprs(*func), (*jit)[0], (*jit)[1]); } return func; }; JITOprArr jits; HostTensorND host_y1, host_y2; auto func1 = make_func(host_y1, nullptr), func2 = make_func(host_y2, &jits); auto run = [&]() -> std::array { func1->execute(); func2->execute(); auto chk = [&]() { MGB_ASSERT_TENSOR_EQ(host_y1, host_y2); }; chk(); return {jits[0]->executable(), jits[1]->executable()}; }; auto exe_shp3 = run(); { run_gen(5); auto exe_shp5 = run(); if (backend == Backend::HALIDE) { ASSERT_NE(exe_shp3, exe_shp5); } else { ASSERT_EQ(exe_shp3, exe_shp5); } } // change ndim run_gen(3, true); ASSERT_NE(exe_shp3, run()); // change bcast pattern { run_gen(3, false, true); auto exe_chg = run(); if (backend == Backend::HALIDE) { ASSERT_NE(exe_shp3, exe_chg); } else { ASSERT_EQ(exe_shp3, exe_chg); } } run_gen(3); ASSERT_EQ(exe_shp3, run()); } template <> void run(Backend backend, CompNode cn) { set_backend(backend); HostTensorGenerator<> gen; int inp_nr = 120; std::vector> host_xs; for (int i = 0; i < inp_nr; i++) host_xs.push_back(gen({4, 3, 2, 1}, cn)); auto make_dst = [&](ComputingGraph& graph) { std::vector dev_xs; for (int i = 0; i < inp_nr; i++) dev_xs.push_back(opr::Host2DeviceCopy::make(graph, host_xs[i])); auto y = dev_xs[0] + dev_xs[1]; for (int i = 2; i < inp_nr; i++) y = y + dev_xs[i]; return y; }; HostTensorND host_y1, host_y2; auto funcs = make_func_pair(host_y1, host_y2, make_dst, 2); funcs.first->execute(); funcs.second->execute(); MGB_ASSERT_TENSOR_EQ(host_y1, host_y2); ASSERT_GT(find_oprs(*funcs.second).size(), 1u); } template <> void run(Backend backend, CompNode cn) { set_backend(backend); FusionChecker checker{ 4, [](const SymbolVarArray& inp) -> SymbolVar { auto spl = opr::Split::make( inp[0], opr::Split::Options::make_partition(inp[0], 1, {1, 1})); return spl[1] * inp[1] + inp[2] * spl[1] + inp[3] + inp[3]; }, cn}; checker.disable_opr_type_check().run({TensorShape{3, 2}, {3, 1}, {3, 1}, {3, 1}}); } template <> void run(Backend backend, CompNode cn) { set_backend(backend); FusionChecker checker{2, [](const SymbolVarArray& inp) -> SymbolVar { return inp[0] + inp[1]; }, cn}; checker.enable_direct_build().run({TensorShape{3, 3}, {3, 3}}); } template <> void run(Backend backend, CompNode cn) { set_backend(backend); FusionChecker checker{ 1, [](const SymbolVarArray& inp) -> SymbolVar { return inp[0] + 1; }, cn}; checker.enable_direct_build().run({TensorShape{3, 1}}); } template <> void run(Backend backend, CompNode cn) { set_backend(backend); FusionChecker checker{ 3, [](const SymbolVarArray& inp) -> SymbolVar { auto iabs = opr::abs(inp[0]) + .23f; return opr::exp(inp[0]) + opr::exp(inp[1]) - opr::exp(inp[2]) * opr::pow(opr::abs(inp[1]) + 0.2f, opr::abs(inp[2]) + 0.1f) + opr::powf(inp[0], 2) - opr::powf(inp[0], -3) + opr::powf(iabs, 1.f / 3.f) + opr::PowC::make(iabs, -1.f / 3.f) + opr::PowC::make(iabs, .5f) + opr::PowC::make(iabs, -.5f); }, cn}; checker.run({TensorShape{2, 3}, {2, 3}, {2, 3}}); } template <> void run(Backend backend, CompNode cn) { set_backend(backend); FusionChecker checker{4, [](const SymbolVarArray& inp) -> SymbolVar { return opr::abs(inp[0]) * (inp[1] + inp[2]) * inp[3] - (inp[1] + inp[2]) * inp[2] / inp[1]; }, cn}; checker.run({TensorShape{3, 3}, {1, 3}, {3, 1}, {1, 3}}); } template <> void run(Backend backend, CompNode cn) { set_backend(backend); auto graph = ComputingGraph::make(); HostTensorGenerator<> gen; auto host_a = gen({1}, cn), host_b = gen({1}, cn), host_c = gen({1}, cn); auto a = opr::Host2DeviceCopy::make(*graph, host_a), b = opr::Host2DeviceCopy::make(*graph, host_b), c = opr::Host2DeviceCopy::make(*graph, host_c), x = opr::sin(a + 1), y = opr::cos(b + 1), z = opr::sin(c + 1); gopt::GraphOptimizer gopt; gopt.add_pass(); VarNodeArray vars{x.node(), y.node(), z.node()}; gopt.apply_inplace(vars); ASSERT_NE(vars[0], vars[1]); ASSERT_NE(vars[0], vars[2]); ASSERT_NE(vars[1], vars[2]); auto func = graph->compile({{vars[0], {}}, {vars[1], {}}, {vars[2], {}}}); func->execute(); auto get_exe = [](SymbolVar var) { return var.node() ->owner_opr() ->cast_final_safe() .executable(); }; auto ex0 = get_exe(vars[0]), ex1 = get_exe(vars[1]), ex2 = get_exe(vars[2]); ASSERT_EQ(ex0, ex2); ASSERT_NE(ex0, ex1); } template <> void run(Backend backend, CompNode cn) { // test all supported modes in multiple threads set_backend(backend); std::vector>> tasks; static auto itrans_none = [](SymbolVar* data, size_t size) {}; static auto itrans_pos = [](SymbolVar* data, size_t size) { for (size_t i = 0; i < size; ++i) { data[i] = opr::abs(data[i]) + float(0.1f + 0.23f * i); } }; static auto itrans_clip1 = [](SymbolVar* data, size_t size) { for (size_t i = 0; i < size; ++i) { data[i] = opr::max(opr::min(data[i], data[i].make_scalar_dt(0.9f)), data[i].make_scalar_dt(-0.9f)); } }; static auto itrans_gt0 = [](SymbolVar* data, size_t size) { for (size_t i = 0; i < size; ++i) { data[i] = opr::max(data[i], data[i].make_scalar_dt(0.1f)); } }; static auto itrans_ne0 = [](SymbolVar* data, size_t size) { for (size_t i = 0; i < size; ++i) { auto mask = opr::abs(data[i]) < 0.1f; data[i] = data[i] * (1.f - mask) + mask * (data[i] + 1.f); } }; #define DO_CHK_ELEM(_mode, _arity, _do_grad, _itrans, _shps...) \ tasks.emplace_back(#_mode, [cn]() { \ FusionChecker chk{_arity, \ [](SymbolVarArray inp) -> SymbolVar { \ itrans_##_itrans(inp.data(), inp.size()); \ return opr::Elemwise::make( \ inp, opr::Elemwise::Mode::_mode); \ }, \ cn}; \ chk.enable_direct_build(); \ if (!_do_grad) { \ chk.disable_inp_grad(); \ } \ chk.run({_shps}); \ }) #define CHECK_ELEM1(_mode, _do_grad, _itrans) \ DO_CHK_ELEM(_mode, 1, _do_grad, _itrans, TensorShape{9, 12, 7}) #define CHECK_ELEM2(_mode, _do_grad, _itrans) \ DO_CHK_ELEM(_mode, 2, _do_grad, _itrans, TensorShape{9, 12, 7}, \ TensorShape{9, 1, 7}) #define CHECK_ELEM3(_mode, _do_grad, _itrans) \ DO_CHK_ELEM(_mode, 3, _do_grad, _itrans, TensorShape{9, 12, 7}, \ TensorShape{9, 1, 7}, TensorShape{1, 12, 7}) #define CHECK_ELEM4(_mode, _do_grad, _itrans) \ DO_CHK_ELEM(_mode, 4, _do_grad, _itrans, TensorShape{9, 12, 7}, \ TensorShape{9, 1, 7}, TensorShape{1, 12, 7}, \ TensorShape{9, 12, 1}) CHECK_ELEM1(RELU, true, none); CHECK_ELEM1(ABS, true, none); CHECK_ELEM1(ACOS, true, clip1); CHECK_ELEM1(ASIN, true, clip1); CHECK_ELEM1(CEIL, false, none); CHECK_ELEM1(COS, true, none); CHECK_ELEM1(EXP, true, none); CHECK_ELEM1(EXPM1, true, none); CHECK_ELEM1(FLOOR, false, none); CHECK_ELEM1(LOG, true, gt0); CHECK_ELEM1(LOG1P, true, gt0); CHECK_ELEM1(NEGATE, true, none); CHECK_ELEM1(SIGMOID, true, none); CHECK_ELEM1(SIN, true, none); CHECK_ELEM1(TANH, true, none); CHECK_ELEM1(ERF, true, none); CHECK_ELEM1(ERFC, true, none); CHECK_ELEM1(H_SWISH, true, none); CHECK_ELEM2(ABS_GRAD, true, none); CHECK_ELEM2(ADD, true, none); CHECK_ELEM2(FLOOR_DIV, false, ne0); CHECK_ELEM2(MAX, true, none); CHECK_ELEM2(MIN, true, none); CHECK_ELEM2(MOD, false, ne0); CHECK_ELEM2(MUL, true, none); CHECK_ELEM2(POW, true, pos); CHECK_ELEM2(SIGMOID_GRAD, true, none); CHECK_ELEM2(SUB, true, none); CHECK_ELEM2(SWITCH_GT0, true, none); CHECK_ELEM2(TANH_GRAD, true, none); CHECK_ELEM2(TRUE_DIV, true, ne0); CHECK_ELEM2(LOG_SUM_EXP, true, none); CHECK_ELEM2(H_SWISH_GRAD, false, none); CHECK_ELEM2(LT, false, none); CHECK_ELEM2(LEQ, false, none); CHECK_ELEM2(EQ, false, none); CHECK_ELEM2(ATAN2, true, gt0); CHECK_ELEM3(COND_LEQ_MOV, false, none); CHECK_ELEM3(FUSE_MUL_ADD3, true, none); CHECK_ELEM4(FUSE_MUL_ADD4, true, none); CHECK_ELEM2(FUSE_ADD_RELU, true, none); CHECK_ELEM2(FUSE_ADD_SIGMOID, true, none); CHECK_ELEM2(FUSE_ADD_TANH, true, none); CHECK_ELEM2(FUSE_ADD_H_SWISH, true, none); ASSERT_EQ(ast_c::elem_opr_generator().size(), tasks.size()); auto type_cvt_test = [&](const char* name, DType src_dtype, DType dst_dtype) { tasks.emplace_back(name, [cn, src_dtype, dst_dtype]() { FusionChecker checker{ 1, [dst_dtype](const SymbolVarArray& inp) -> SymbolVar { return opr::TypeCvt::make(inp[0], dst_dtype); }, cn}; checker.enable_direct_build(); checker.set_dtype(0, src_dtype).run({TensorShape{4, 7, 99, 1}}); }); }; type_cvt_test("f16->f32", dtype::Float16(), dtype::Float32()); type_cvt_test("f32->f16", dtype::Float32(), dtype::Float16()); #undef CHECK_ELEM1 #undef CHECK_ELEM2 #undef CHECK_ELEM3 #undef CHECK_ELEM4 #undef DO_CHK_ELEM std::vector workers; std::atomic_size_t finished_tasks{0}; auto worker = [&tasks, &finished_tasks](int wid) { for (;;) { size_t id = finished_tasks.fetch_add(1); if (id >= tasks.size()) { return; } if (!::testing::Test::HasFailure()) { mgb_log("going to run %s on worker %d", tasks[id].first, wid); ASSERT_NO_THROW(tasks[id].second()) << "failed for " << tasks[id].first; } } }; int nr_worker; if (auto set = MGB_GETENV("MGB_JIT_TEST_WORKER")) { nr_worker = std::stoi(set); } else { nr_worker = CompNode::get_device_count(CompNode::DeviceType::CPU) / 2; } if (nr_worker == 1) { worker(-1); } else { for (int i = 0; i < nr_worker; ++i) { workers.emplace_back(worker, i); } for (auto&& i : workers) { i.join(); } } ASSERT_GE(finished_tasks.load(), tasks.size()); } template <> void run(Backend backend, CompNode cn) { set_backend(backend); auto make_jit = [](SymbolVar target, const SymbolVarArray& inputs) { auto y = target.node(); auto ig_gen = std::make_unique(y->owner_opr()); auto inputs_vptr = cg::to_var_node_array(inputs); for (auto i : get_rev_topo_order( target, {inputs_vptr.begin(), inputs_vptr.end()})) { ig_gen->add_opr(i); } auto igraph = ig_gen->generate(); return JITExecutor::make(igraph, ig_gen->orig_inps()); }; auto graph = ComputingGraph::make(); graph->options().graph_opt_level = 3; HostTensorGenerator<> gen; auto host_x = gen({3, 3}, cn); auto x = opr::Host2DeviceCopy::make(*graph, host_x); auto type_cvt_x = opr::TypeCvt::make(x, dtype::Float16()); auto relu_x = opr::relu(type_cvt_x); auto sin_x = opr::sin(relu_x); auto host_y = gen({3, 3}, cn); auto y = opr::Host2DeviceCopy::make(*graph, host_y); auto type_cvt_y = opr::TypeCvt::make(y, dtype::Float16()); auto relu_y = opr::relu(type_cvt_y); auto sin_y = opr::sin(relu_y); auto fusion_x = make_jit(sin_x, {relu_x}); auto fusion_y = make_jit(sin_y, {type_cvt_y}); auto z = fusion_x + fusion_y; // expanding at endpoint auto fusion0_x = make_jit(sin_x, {type_cvt_x}); auto fusion1_x = make_jit(fusion0_x, {x}); auto fusion2_x = make_jit(sin_x, {x}); ASSERT_EQ(fusion1_x, fusion2_x); // expand mulitple JITExecutor auto fusion_z = make_jit(z, {x, y}); auto fusion_z_expected = make_jit(sin_x + sin_y, {x, y}); ASSERT_EQ(fusion_z, fusion_z_expected); } SymbolVar jit_stop(SymbolVar x) { return opr::Sleep::make(x, 1e-3); } template <> void run(Backend backend, CompNode cn) { set_backend(backend); auto loc = cn.locator_logical(); mgb_assert(loc.device >= 0); loc.device += 1; if (loc.device >= static_cast(CompNode::get_device_count(loc.type))) { return; } HostTensorGenerator<> gen; auto cn1 = CompNode::load(loc); auto host_x = gen({42, 23}, cn); auto make_dst = [&](ComputingGraph& graph) { auto x = opr::Host2DeviceCopy::make(graph, host_x), a = opr::tanh(x) + opr::sin(x), y = opr::Copy::make(x, cn1), b = opr::tanh(y) + opr::sin(y); return jit_stop(a) + opr::Copy::make(b, cn); }; HostTensorND host_z1, host_z2; auto funcs = make_func_pair(host_z1, host_z2, make_dst, 2); for (int i = 0; i < 8; ++i) { funcs.first->execute(); funcs.second->execute(); if (i == 4) { host_x->copy_from(*gen({10, 20, 3}, cn)); } else { host_x->copy_from(*gen(host_x->shape(), cn)); } MGB_ASSERT_TENSOR_EQ(host_z1, host_z2); } auto jits = find_oprs(*funcs.second); ASSERT_EQ(2u, jits.size()); ASSERT_EQ(jits[0]->internal_graph().output(), jits[1]->internal_graph().output()); } template <> void run(Backend backend, CompNode cn) { // multiple shapes of same computing expr set_backend(backend); HostTensorGenerator<> gen; auto host_x = gen({4, 2, 3}, cn), host_y = gen({4, 2}, cn); auto make_dst = [&](ComputingGraph& graph) { auto x = opr::Host2DeviceCopy::make(graph, host_x).rename("x"), y = opr::Host2DeviceCopy::make(graph, host_y).rename("y"), jit0 = jit_stop(opr::sin(x) * x), a = opr::AxisAddRemove::make( opr::Reduce::make(jit0, {opr::Reduce::Param::Mode::SUM, 2}), {opr::AxisAddRemove::AxisDesc::make_remove(2)}), jit1 = jit_stop(opr::sin(a) + opr::sin(y)), jit2 = opr::sin(jit1) * jit1; return jit2; }; HostTensorND host_z1, host_z2; auto funcs = make_func_pair(host_z1, host_z2, make_dst, 2); auto jits = find_oprs(*funcs.second); ASSERT_EQ(3u, jits.size()); ASSERT_EQ(jits[0]->internal_graph().output(), jits[2]->internal_graph().output()); for (int i = 0; i < 8; ++i) { funcs.first->execute(); funcs.second->execute(); if (i == 4) { host_x->copy_from(*gen({3, 7, 5}, cn)); host_y->copy_from(*gen({3, 7}, cn)); } else { host_x->copy_from(*gen(host_x->shape(), cn)); host_y->copy_from(*gen(host_y->shape(), cn)); } MGB_ASSERT_TENSOR_EQ(host_z1, host_z2); } } template <> void run(Backend backend, CompNode cn) { set_backend(backend); HostTensorGenerator<> gen; auto host_x = gen({2, 3}, cn); SmallVector> subs; auto make_dst = [&](ComputingGraph& graph) { auto x = opr::Host2DeviceCopy::make(graph, host_x), y = opr::Subtensor::make( x, {opr::Subtensor::AxisIndexer::make_interval( 1, x.make_scalar(1), x.make_scalar(3), None)}); subs.emplace_back(x, y); return opr::sin(y) * y; }; HostTensorND y0, y1; auto funcs = make_func_pair(y0, y1, make_dst, 2); for (size_t s : {4, 7}) { *host_x = *gen({3, s}); funcs.first->execute(); funcs.second->execute(); MGB_ASSERT_TENSOR_EQ(y0, y1); } ASSERT_EQ(2u, subs.size()); for (int i = 0; i < 2; ++i) { auto p0 = static_cast(prev_dev_ptr(subs[i].first)) + 1, p1 = static_cast(prev_dev_ptr(subs[i].second)); if (backend != Backend::HALIDE || !i) { ASSERT_EQ(p0, p1); } else { ASSERT_NE(p0, p1); } } } template <> void run(Backend backend, CompNode cn) { // build a graph that would have exponential complexity if graph visiting is // not correctly implemented set_backend(backend); HostTensorGenerator gen{0.01f, 0.02f}; auto host_x = gen({3, 4}, cn); auto make_dst = [&](ComputingGraph& graph) { auto x = opr::Host2DeviceCopy::make(graph, host_x); auto y = x; for (int i = 0; i < 32; ++i) { y = y * y + y; } return y; }; HostTensorND host_y1, host_y2; auto funcs = make_func_pair(host_y1, host_y2, make_dst, 2); funcs.first->execute(); funcs.second->execute(); MGB_ASSERT_TENSOR_EQ(host_y1, host_y2); ASSERT_EQ(1u, find_oprs(*funcs.second).size()); ASSERT_TRUE(find_oprs(*funcs.second).empty()); } template <> void run(Backend backend, CompNode cn) { set_backend(backend); HostTensorGenerator<> gen; auto host_x = gen({2, 3, 4}, cn); auto make_dst = [&](ComputingGraph& graph) { auto x = opr::Host2DeviceCopy::make(graph, host_x); return (x * x + 1.f) / (opr::sin(x) + 1.2f) * .3f; }; HostTensorND host_y1, host_y2; auto funcs = make_func_pair(host_y1, host_y2, make_dst, 2); funcs.first->execute(); funcs.second->execute(); MGB_ASSERT_TENSOR_EQ(host_y1, host_y2); JITExecutor* jit; unpack_vector(find_oprs(*funcs.second), jit); ASSERT_TRUE(find_oprs(*funcs.second).empty()); ASSERT_EQ(1u, jit->input().size()); ASSERT_TRUE(jit->input(0)->owner_opr()->same_type()); } template <> void run(Backend backend, CompNode cn) { set_backend(backend); HostTensorGenerator<> gen; auto host_x = gen({3, 3}, cn); auto host_y = gen({2, 1}, cn); auto make_dst = [&](ComputingGraph& graph) { auto x = opr::Host2DeviceCopy::make(graph, host_x); auto y = opr::Host2DeviceCopy::make(graph, host_y); auto spl = opr::Split::make(x, opr::Split::Options::make_partition(x, 1, {1, 2})); auto mat = mgb::opr::MatrixMul::make(spl[1], y); return (spl[0] * spl[0] + 1.f) / (mat + 1.2f) * .3f; }; HostTensorND host_y1, host_y2; auto funcs = make_func_pair(host_y1, host_y2, make_dst, 2); funcs.first->execute(); funcs.second->execute(); MGB_ASSERT_TENSOR_EQ(host_y1, host_y2); JITExecutor* jit; unpack_vector(find_oprs(*funcs.second), jit); ASSERT_TRUE(find_oprs(*funcs.second).empty()); ASSERT_EQ(2u, jit->input().size()); } } // namespace #if MGB_JIT_HALIDE TEST(TestJITFusionHalide, SimpleReduce) { REQUIRE_GPU(1); set_backend(Backend::HALIDE); auto graph = ComputingGraph::make(); graph->options().graph_opt_level = 3; graph->options().graph_opt.jit = 2; HostTensorGenerator<> gen; auto host_x0 = gen({3, 3}), host_x1 = gen({3, 1}); auto a = opr::Host2DeviceCopy::make(*graph, host_x0), b = opr::Host2DeviceCopy::make(*graph, host_x1), y = opr::reduce_sum(a + b, opr::GetVarShape::make(b)), z = opr::reduce_sum(a * b, opr::GetVarShape::make(a)) + y; SymbolVar z_opt; unpack_vector(gopt::GraphOptimizer{} .add_preset_passes(true, nullptr, &(graph->options())) .apply({{z}}) .endpoint_vars(), z_opt); ASSERT_EQ(2u, find_opr_num(z_opt)); HostTensorND h; graph->compile({make_callback_copy(z_opt, h)}) ->to_json() ->writeto_fpath( output_file("TestJITFusionHalide.SimpleReduce.json")); } TEST(TestJITFusionHalide, JITExecutor) { REQUIRE_GPU(1); set_backend(Backend::HALIDE); auto graph = ComputingGraph::make(); graph->options().graph_opt_level = 3; graph->options().graph_opt.jit = 2; HostTensorGenerator<> gen; auto host_x0 = gen({3, 3}), host_x1 = gen({3, 1}), host_x2 = gen({3, 3}), host_x3 = gen({3, 1}); auto a = opr::Host2DeviceCopy::make(*graph, host_x0), b = opr::Host2DeviceCopy::make(*graph, host_x1), c = opr::Host2DeviceCopy::make(*graph, host_x2), d = opr::Host2DeviceCopy::make(*graph, host_x3), shape_of_b = opr::GetVarShape::make(b), shape_of_a = opr::GetVarShape::make(a), y = opr::reduce_sum(a + b, shape_of_b), z = opr::reduce_sum(a * b, shape_of_a); auto ig_gen_1 = std::make_unique(y.node()->owner_opr()); auto ig_gen_2 = std::make_unique(z.node()->owner_opr()); { ThinHashSet nd_set; nd_set.insert(a.node()); nd_set.insert(b.node()); nd_set.insert(shape_of_b.node()); auto topo = get_rev_topo_order(y, nd_set); for (auto opr : topo) { ig_gen_1->add_opr(opr); } } { ThinHashSet nd_set; nd_set.insert(a.node()); nd_set.insert(b.node()); nd_set.insert(shape_of_a.node()); auto topo = get_rev_topo_order(z, nd_set); for (auto opr : topo) { ig_gen_2->add_opr(opr); } } auto ig_1 = ig_gen_1->generate(), ig_2 = ig_gen_2->generate(); auto jit_1 = JITExecutor::make(ig_1, ig_gen_1->orig_inps()); auto jit_2 = JITExecutor::make(ig_2, ig_gen_2->orig_inps()); auto w = opr::reduce_sum(a * b + c * d, opr::GetVarShape::make(a)), x = w + jit_1, u = x * jit_2; SymbolVar u_opt; unpack_vector(gopt::GraphOptimizer{} .add_preset_passes(true, nullptr, &(graph->options())) .apply({{u}}) .endpoint_vars(), u_opt); ASSERT_EQ(2u, find_opr_num(u_opt)); ASSERT_GT(1u, find_opr_num(u_opt)); HostTensorND h; graph->compile({make_callback_copy(u_opt, h)}) ->to_json() ->writeto_fpath( output_file("TestJITFusionHalide.JITExecutor.json")); } TEST(TestJITFusionHalide, BatchNormalization) { REQUIRE_GPU(1); set_backend(Backend::HALIDE); auto graph1 = ComputingGraph::make(); graph1->options().graph_opt_level = 3; graph1->options().graph_opt.jit = 2; HostTensorGenerator gen{0.1, 1}; size_t n = 32, c = 24, h = 28, w = 28; auto host_x0 = gen({n, c, h, w}); auto host_tshp = std::make_shared(host_x0->comp_node(), dtype::Int32()); host_tshp->resize({4}); host_tshp->ptr()[0] = 1; host_tshp->ptr()[1] = c; host_tshp->ptr()[2] = 1; host_tshp->ptr()[3] = 1; auto host_pow = std::make_shared(host_x0->comp_node(), dtype::Float32()); host_pow->resize({1}); host_pow->ptr()[0] = -0.5; auto pow = opr::Host2DeviceCopy::make(*graph1, host_pow, {"pow"}); auto x = opr::Host2DeviceCopy::make(*graph1, host_x0, {"x"}), tshp = opr::Host2DeviceCopy::make(*graph1, host_tshp, {"tshp"}); auto xshp = opr::GetVarShape::make(x); auto reduce_size = opr::reduce_prod(xshp, xshp.make_scalar(1)) / opr::reduce_prod(tshp, tshp.make_scalar(1)); auto xx = opr::Elemwise::make({2 * x}, opr::Elemwise::Param::Mode::RELU); auto x1 = opr::reduce_sum(xx, tshp); auto x2 = opr::reduce_sum_sqr(xx, tshp); auto var = (x2 - x1 * x1 / reduce_size) / (reduce_size - 1), regular_var = var + (float)(1e-5); auto invsqrt_var = opr::Elemwise::make({regular_var, pow}, opr::Elemwise::Param::Mode::POW); auto ovar = (x - x1 / reduce_size) * invsqrt_var; HostTensorND h_ovar; using Callback = thin_function; using OutputSpecItem = std::pair; using OutputSpec = std::vector; OutputSpec out_spec; out_spec.push_back(make_callback_copy(ovar, h_ovar)); HostTensorND h_grad; bool do_grad = true; if (do_grad) { auto reduce_ovar = opr::reduce_sum(ovar * ovar, ovar.make_scalar(1)); auto grad = cg::grad(reduce_ovar, x); out_spec.push_back(make_callback_copy(grad, h_grad)); } auto func1 = graph1->compile(out_spec); func1->to_json()->writeto_fpath( output_file("TestJITFusionHalide.BatchNormalization.json")); func1->execute(); auto graph2 = ComputingGraph::make(); graph2->options().graph_opt_level = 0; auto pow_ = opr::Host2DeviceCopy::make(*graph2, host_pow, {"pow"}); auto x_ = opr::Host2DeviceCopy::make(*graph2, host_x0, {"x"}), tshp_ = opr::Host2DeviceCopy::make(*graph2, host_tshp, {"tshp"}); auto xshp_ = opr::GetVarShape::make(x_); auto reduce_size_ = opr::reduce_prod(xshp_, xshp_.make_scalar(1)) / opr::reduce_prod(tshp_, tshp_.make_scalar(1)); auto xx_ = opr::Elemwise::make({2 * x_}, opr::Elemwise::Param::Mode::RELU); auto x1_ = opr::reduce_sum(xx_, tshp_); auto x2_ = opr::reduce_sum_sqr(xx_, tshp_); auto var_ = (x2_ - x1_ * x1_ / reduce_size_) / (reduce_size_ - 1), regular_var_ = var_ + (float)(1e-5); auto invsqrt_var_ = opr::Elemwise::make({regular_var_, pow_}, opr::Elemwise::Param::Mode::POW); auto ovar_ = (x_ - x1_ / reduce_size_) * invsqrt_var_; HostTensorND h_ovar_; OutputSpec out_spec_; out_spec_.push_back(make_callback_copy(ovar_, h_ovar_)); HostTensorND h_grad_; if (do_grad) { auto reduce_ovar = opr::reduce_sum(ovar_ * ovar_, ovar_.make_scalar(1)); auto grad = cg::grad(reduce_ovar, x_); out_spec_.push_back(make_callback_copy(grad, h_grad_)); } auto func2 = graph2->compile(out_spec_); func2->execute(); MGB_ASSERT_TENSOR_NEAR(h_ovar_, h_ovar, 3e-5); if (do_grad){ MGB_ASSERT_TENSOR_NEAR(h_grad_, h_grad, 3e-4); } } TEST(TestJITFusionHalide, ReduceShapeManip) { REQUIRE_GPU(1); set_backend(Backend::HALIDE); auto cn = CompNode::load("gpu0"); HostTensorGenerator<> gen; auto do_chk = [&](bool dyn_shape) { auto host_x = gen({7, 8, 9}, cn); // TODO: handle opr fusion without shape constraints, and test dynamic // shape case where target shape can be inferred auto make_dst = [&host_x, dyn_shape](ComputingGraph& cg) { auto x = opr::Host2DeviceCopy::make(cg, host_x), xm2 = x * 2, one = x.make_scalar(1), tshp = opr::Concat::make( {one, opr::GetVarShape::make( dyn_shape ? opr::MarkDynamicVar::make(xm2) : xm2, 1), one}, 0), y = opr::reduce_sum(xm2, tshp) + 3; return y; }; HostTensorND host_y0, host_y1; auto funcs = make_func_pair(host_y0, host_y1, make_dst, 2); auto run = [&]() { funcs.first->execute(); funcs.second->execute(); MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5); }; funcs.second->to_json()->writeto_fpath(output_file(ssprintf( "TestJITFusionHalide.ReduceShapeManip%d.json", dyn_shape))); run(); host_x->copy_from(*gen({13, 4, 5}, cn)); run(); if (!dyn_shape) { JITExecutor* jit; unpack_vector(find_oprs(*funcs.second), jit); ASSERT_TRUE(jit->input(0) ->owner_opr() ->same_type()); ASSERT_EQ(2u, jit->input().size()); auto dep_type = jit->node_prop().dep_map().at(jit->input(1)); ASSERT_EQ(cg::OperatorNodeBase::NodeProp::DepType::HOST_VALUE, dep_type); ASSERT_EQ(0u, find_oprs(*funcs.second).size()); } }; do_chk(false); do_chk(true); } TEST(TestJITFusionHalide, ReduceExp) { REQUIRE_GPU(1); set_backend(Backend::HALIDE); FusionChecker checker{ 2, [](const SymbolVarArray& inp) -> SymbolVar { auto var1 = opr::reduce_sum(inp[0], opr::GetVarShape::make(inp[1])); auto var2 = opr::reduce_sum_sqr(inp[0] + inp[1], opr::GetVarShape::make(inp[1])); return var1 + var2; }, CompNode::load("gpu0")}; checker.run({TensorShape{3, 3}, {3, 1}}); checker.run({TensorShape{3, 3}, {1}}); // to scalar } TEST(TestJITFusionHalide, ReduceO16xC32) { REQUIRE_GPU(1); set_backend(Backend::HALIDE); using DataType = opr::Reduce::Param::DataType; FusionChecker checker{ 2, [](const SymbolVarArray& inp) -> SymbolVar { auto var1 = opr::Reduce::make( inp[0], {opr::Reduce::Mode::SUM, 1, DataType::FLOAT_O16xC32}, {}); auto var2 = opr::Reduce::make(inp[0], {opr::Reduce::Mode::SUM_SQR, 1, DataType::FLOAT_O16xC32}, {}); return var1 + var2; }, CompNode::load("gpu0")}; checker.disable_inp_grad().run({TensorShape{3, 3}, {3, 1}}); } TEST(TestJITFusionHalide, ReduceSum) { REQUIRE_GPU(1); set_backend(Backend::HALIDE); FusionChecker checker{2, [](const SymbolVarArray& inp) -> SymbolVar { auto var1 = opr::reduce_sum( inp[0], opr::GetVarShape::make(inp[1])); return var1 + inp[1]; }, CompNode::load("gpu0")}; checker.run({TensorShape{3, 3}, {3, 1}}); checker.run({TensorShape{3, 3}, {1}}); // test reduce to scalar } TEST(TestJITFusionHalide, ReduceSumSqr) { REQUIRE_GPU(1); set_backend(Backend::HALIDE); FusionChecker checker{2, [](const SymbolVarArray& inp) -> SymbolVar { auto var1 = opr::reduce_sum_sqr( inp[0], opr::GetVarShape::make(inp[1])); return var1 + inp[1]; }, CompNode::load("gpu0")}; checker.run({TensorShape{3, 3}, {3, 1}}); checker.run({TensorShape{3, 3}, {3, 3}}); // test side effect } TEST(TestJITFusionHalide, ReduceMax) { REQUIRE_GPU(1); set_backend(Backend::HALIDE); FusionChecker checker{2, [](const SymbolVarArray& inp) -> SymbolVar { auto var1 = opr::reduce_max( inp[0], opr::GetVarShape::make(inp[1])); return var1 + inp[1]; }, CompNode::load("gpu0")}; checker.run({TensorShape{3, 3}, {3, 1}}); } TEST(TestJITFusionHalide, ReduceMin) { REQUIRE_GPU(1); set_backend(Backend::HALIDE); FusionChecker checker{2, [](const SymbolVarArray& inp) -> SymbolVar { auto var1 = opr::reduce_min( inp[0], opr::GetVarShape::make(inp[1])); return var1 + inp[1]; }, CompNode::load("gpu0")}; checker.run({TensorShape{3, 3}, {3, 1}}); } TEST(TestJITFusionHalide, ReduceProduct) { REQUIRE_GPU(1); set_backend(Backend::HALIDE); FusionChecker checker{2, [](const SymbolVarArray& inp) -> SymbolVar { auto var1 = opr::reduce_prod( inp[0], opr::GetVarShape::make(inp[1])); return var1 + inp[1]; }, CompNode::load("gpu0")}; checker.run({TensorShape{3, 3}, {3, 1}}); } TEST(TestJITFusionHalide, ReduceMean) { REQUIRE_GPU(1); set_backend(Backend::HALIDE); FusionChecker checker{2, [](const SymbolVarArray& inp) -> SymbolVar { auto var1 = opr::Reduce::make( inp[0], opr::Reduce::Param::Mode::MEAN, opr::GetVarShape::make(inp[1])); return var1 + inp[1]; }, CompNode::load("gpu0")}; checker.run({TensorShape{3, 3}, {3, 1}}); } TEST(TestJITFusionHalide, SameGradOpr) { REQUIRE_GPU(1); set_backend(Backend::HALIDE); auto cn = CompNode::load("gpu0"); auto graph = ComputingGraph::make(); HostTensorGenerator<> gen; auto host_x0 = gen({3, 3}, cn), host_x1 = gen({3, 1}, cn), host_x2 = gen({3, 3}, cn); auto a = opr::Host2DeviceCopy::make(*graph, host_x0), b = opr::Host2DeviceCopy::make(*graph, host_x1), c = opr::Host2DeviceCopy::make(*graph, host_x2); auto y = (a + b) * c; auto reduce_y = opr::reduce_sum(y * y, y.make_scalar(1)); auto a_grad = opr::VirtualGrad::make(reduce_y.node(), a.node()); auto b_grad = opr::VirtualGrad::make(reduce_y.node(), b.node()); auto c_grad = opr::VirtualGrad::make(reduce_y.node(), c.node()); gopt::GraphOptimizer gopt; gopt.add_pass(true); gopt.add_pass(); VarNodeArray vars{y.node(), a_grad.node(), b_grad.node(), c_grad.node()}; gopt.apply_inplace(vars); ASSERT_EQ(vars[1]->owner_opr()->input(0), vars[2]->owner_opr()->input(0)); ASSERT_NE(vars[1]->owner_opr()->input(0), vars[3]->owner_opr()->input(0)); } template class TestJITHalideFusionCuda : public ::testing::Test {}; TYPED_TEST_CASE(TestJITHalideFusionCuda, test_types); TYPED_TEST(TestJITHalideFusionCuda, run) { set_backend(Backend::NONE); REQUIRE_GPU(1); run(Backend::HALIDE, CompNode::load("gpu0")); set_backend(Backend::NONE); } #endif // MGB_JIT_HALIDE template class TestJITNvrtcFusion : public ::testing::Test {}; TYPED_TEST_CASE(TestJITNvrtcFusion, test_types); TYPED_TEST(TestJITNvrtcFusion, run) { set_backend(Backend::NONE); REQUIRE_GPU(1); run(Backend::NVRTC, CompNode::load("gpu0")); set_backend(Backend::NONE); } TEST(TestJITNvrtcFusion, SourceCache) { REQUIRE_GPU(1); set_backend(Backend::NVRTC); std::string cache_cat; std::vector sources; auto on_cache_get = [&](const std::string& category, const void* key, size_t key_size, const void*, size_t) { if (cache_cat.empty()) { cache_cat = category; } else { ASSERT_EQ(cache_cat, category); } sources.push_back(std::string{static_cast(key), key_size}); }; PersistentCacheHook cache_hook{on_cache_get}; auto cn = CompNode::load("gpu0"); auto run = [cn]() { HostTensorGenerator<> gen; auto host_x = gen({2, 3}, cn); auto make_dst = [&](ComputingGraph& graph) { auto x = opr::Host2DeviceCopy::make(graph, host_x), y = jit_stop(x * opr::sin(x)), z = y + opr::tanh(y); return z; }; HostTensorND host_y1, host_y2; auto funcs = make_func_pair(host_y1, host_y2, make_dst, 2); ASSERT_EQ(2u, find_oprs(*funcs.second).size()); funcs.first->execute(); funcs.second->execute(); MGB_ASSERT_TENSOR_EQ(host_y1, host_y2); }; for (size_t i = 0; i < 4; ++i) { run(); ASSERT_EQ((i + 1) * 2, sources.size()); ASSERT_EQ(sources[0], sources[i * 2]); ASSERT_EQ(sources[1], sources[i * 2 + 1]); } } TEST(TestJITNvrtc, DimshuffleFusion) { REQUIRE_GPU(1); set_backend(Backend::NVRTC); auto cn = CompNode::load("gpu0"); HostTensorGenerator<> gen; // single dimshuffle { auto host_x = gen({2, 3, 8, 8}, cn); auto host_w = gen({3, 3, 1, 1}, cn); auto make_dst = [&](ComputingGraph& graph) { auto data = opr::SharedDeviceTensor::make(graph, *host_x); auto w = opr::SharedDeviceTensor::make(graph, *host_w); opr::Convolution::Param param; auto x = opr::Convolution::make(data, w, param); x = opr::relu(x); x = opr::Dimshuffle::make(x, {1, 2, 3, 0}); x = opr::TypeCvt::make(x, dtype::Float16{}); return x; }; HostTensorND host_y1, host_y2; auto funcs = make_func_pair(host_y1, host_y2, make_dst, 1); ASSERT_EQ(1u, find_oprs(*funcs.second).size()); ASSERT_EQ(1u, find_oprs(*funcs.second).size()); ASSERT_EQ(0u, find_oprs(*funcs.second).size()); ASSERT_EQ(0u, find_oprs(*funcs.second).size()); ASSERT_EQ(0u, find_oprs(*funcs.second).size()); funcs.first->execute(); funcs.second->execute(); MGB_ASSERT_TENSOR_EQ(host_y1, host_y2); } // multi dimshuffle in one branch { auto host_x = gen({3, 4, 6}, cn); auto make_dst = [&](ComputingGraph& graph) { auto data = opr::SharedDeviceTensor::make(graph, *host_x); auto x = opr::relu(data); x = opr::Dimshuffle::make(x, {2, 0, 1}); x = opr::sigmoid(x); x = opr::Dimshuffle::make(x, {1, 0, -1, 2}); x = opr::TypeCvt::make(x, dtype::Float16{}); return x; }; HostTensorND host_y1, host_y2; auto funcs = make_func_pair(host_y1, host_y2, make_dst, 1); ASSERT_EQ(1u, find_oprs(*funcs.second).size()); ASSERT_EQ(0u, find_oprs(*funcs.second).size()); ASSERT_EQ(0u, find_oprs(*funcs.second).size()); ASSERT_EQ(0u, find_oprs(*funcs.second).size()); funcs.first->execute(); funcs.second->execute(); MGB_ASSERT_TENSOR_EQ(host_y1, host_y2); } // multi dimshuffle in two branch { auto host_x = gen({3, 4, 6}, cn); auto make_dst = [&](ComputingGraph& graph) { auto data = opr::SharedDeviceTensor::make(graph, *host_x); auto x = opr::relu(data); x = opr::Dimshuffle::make(x, {2, 0, 1}); x = opr::sigmoid(x); x = opr::Dimshuffle::make(x, {1, 0, -1, 2}); x = opr::TypeCvt::make(x, dtype::Float16{}); auto y = opr::sigmoid(data); y = opr::Dimshuffle::make(y, {0, 2, -1, 1}); y = opr::TypeCvt::make(y, dtype::Float16{}); auto z = x + y; return z; }; HostTensorND host_y1, host_y2; auto funcs = make_func_pair(host_y1, host_y2, make_dst, 1); ASSERT_EQ(1u, find_oprs(*funcs.second).size()); ASSERT_EQ(0u, find_oprs(*funcs.second).size()); ASSERT_EQ(0u, find_oprs(*funcs.second).size()); ASSERT_EQ(0u, find_oprs(*funcs.second).size()); funcs.first->execute(); funcs.second->execute(); MGB_ASSERT_TENSOR_NEAR(host_y1, host_y2, 1e-3); } // dimshuffle pattern length > 4 { auto host_x = gen({4, 3, 4, 6}, cn); auto make_dst = [&](ComputingGraph& graph) { auto data = opr::SharedDeviceTensor::make(graph, *host_x); auto x = opr::relu(data); x = opr::Dimshuffle::make(x, {2, 1, 0, -1, 3}); x = opr::TypeCvt::make(x, dtype::Float16{}); return x; }; HostTensorND host_y1, host_y2; auto g0 = ComputingGraph::make(); g0->options().graph_opt_level = 0; auto f0 = g0->compile({make_callback_copy(make_dst(*g0), host_y1)}); auto g1 = ComputingGraph::make(); g1->options().graph_opt_level = 3; g1->options().graph_opt.jit = 1; auto f1 = g1->compile({make_callback_copy(make_dst(*g1), host_y2)}); EXPECT_TRUE(find_oprs(*f1).empty()); f0->execute(); f1->execute(); MGB_ASSERT_TENSOR_EQ(host_y1, host_y2); } // dimshuffle is endpoint { auto host_x = gen({4, 3, 4, 6}, cn); auto make_dst = [&](ComputingGraph& graph) { auto x = opr::TypeCvt::make( opr::Host2DeviceCopy::make(graph, host_x), dtype::Float16{}); auto y = opr::Dimshuffle::make(x, {3, 0, 1, 2}); return y; }; HostTensorND host_y; auto g1 = ComputingGraph::make(); g1->options().graph_opt_level = 3; g1->options().graph_opt.jit = 1; auto f1 = g1->compile({make_callback_copy(make_dst(*g1), host_y)}); EXPECT_TRUE(find_oprs(*f1).empty()); } } TEST(TestJITNvrtc, DimshuffleGrad) { REQUIRE_GPU(1); set_backend(Backend::NVRTC); auto cn = CompNode::load("gpu0"); HostTensorGenerator<> gen; // single dimshuffle { auto host_x = gen({2, 3, 8, 8}, cn); auto host_w = gen({3, 3, 1, 1}, cn); auto make_dst = [&](ComputingGraph& graph) { auto data = opr::SharedDeviceTensor::make(graph, *host_x); auto w = opr::SharedDeviceTensor::make(graph, *host_w); opr::Convolution::Param param; auto x = opr::Convolution::make(data, w, param); x = opr::relu(x); x = opr::Dimshuffle::make(x, {1, 2, 3, 0}); x = opr::TypeCvt::make(x, dtype::Float16{}); auto loss = opr::reduce_sum(x, x.make_scalar(1)); auto grad = cg::grad(loss, w); return grad; }; HostTensorND host_y1, host_y2; auto funcs = make_func_pair(host_y1, host_y2, make_dst, 1); ASSERT_EQ(1u, find_oprs(*funcs.second).size()); ASSERT_EQ(1u, find_oprs(*funcs.second).size()); ASSERT_EQ(0u, find_oprs(*funcs.second).size()); ASSERT_EQ(0u, find_oprs(*funcs.second).size()); ASSERT_EQ(0u, find_oprs(*funcs.second).size()); funcs.first->execute(); funcs.second->execute(); MGB_ASSERT_TENSOR_EQ(host_y1, host_y2); } // multi dimshuffle in two branch { auto host_x = gen({3, 4, 6}, cn); auto make_dst = [&](ComputingGraph& graph) { auto data = opr::SharedDeviceTensor::make(graph, *host_x); auto x = opr::relu(data); x = opr::Dimshuffle::make(x, {2, 0, 1}); x = opr::sigmoid(x); x = opr::Dimshuffle::make(x, {1, 0, -1, 2}); x = opr::TypeCvt::make(x, dtype::Float16{}); auto y = opr::sigmoid(data); y = opr::Dimshuffle::make(y, {0, 2, -1, 1}); y = opr::TypeCvt::make(y, dtype::Float16{}); auto z = x + y; auto loss = opr::reduce_sum(z, z.make_scalar(1)); auto grad = cg::grad(loss, data); return grad; }; HostTensorND host_y1, host_y2; auto funcs = make_func_pair(host_y1, host_y2, make_dst, 1); ASSERT_EQ(1u, find_oprs(*funcs.second).size()); ASSERT_EQ(0u, find_oprs(*funcs.second).size()); ASSERT_EQ(0u, find_oprs(*funcs.second).size()); ASSERT_EQ(0u, find_oprs(*funcs.second).size()); funcs.first->execute(); funcs.second->execute(); MGB_ASSERT_TENSOR_NEAR(host_y1, host_y2, 1e-3); } } #endif // MGB_JIT // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}