/** * \file dnn/test/cuda/rng.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2020 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ #include "megdnn/oprs.h" #include "test/cuda/fixture.h" #include "test/naive/rng.h" #include "test/common/tensor.h" namespace megdnn { namespace test { TEST_F(CUDA, UNIFORM_RNG_F32) { auto opr = handle_cuda()->create_operator(); SyncedTensor<> t(handle_cuda(), {TensorShape{200000}, dtype::Float32()}); opr->exec(t.tensornd_dev(), {}); assert_uniform_correct(t.ptr_mutable_host(), t.layout().total_nr_elems()); } TEST_F(CUDA, GAUSSIAN_RNG_F32) { auto opr = handle_cuda()->create_operator(); opr->param().mean = 0.8; opr->param().std = 2.3; for (size_t size: {1, 200000, 200001}) { TensorLayout ly{{size}, dtype::Float32()}; Tensor workspace(handle_cuda(), {TensorShape{opr->get_workspace_in_bytes(ly)}, dtype::Byte()}); SyncedTensor<> t(handle_cuda(), ly); opr->exec(t.tensornd_dev(), {workspace.ptr(), workspace.layout().total_nr_elems()}); auto ptr = t.ptr_mutable_host(); ASSERT_LE(std::abs(ptr[0] - 0.8), 2.3); if (size >= 1000) { auto stat = get_mean_var(ptr, size, 0.8f); ASSERT_LE(std::abs(stat.first - 0.8), 5e-3); ASSERT_LE(std::abs(stat.second - 2.3 * 2.3), 5e-2); } } } } // namespace test } // namespace megdnn // vim: syntax=cpp.doxygen