# -*- coding: utf-8 -*- import itertools import platform from functools import partial import numpy as np import pytest from utils import opr_test import megengine.amp as amp import megengine.config as config import megengine.core.ops.builtin as builtin import megengine.core.tensor.dtype as dtype import megengine.functional as F import megengine.jit as jit from megengine import Parameter, Tensor, is_cuda_available, tensor from megengine.autodiff import GradManager from megengine.core._trace_option import use_symbolic_shape from megengine.core.autodiff.grad import Grad from megengine.core.tensor.utils import make_shape_tuple from megengine.device import get_device_count from megengine.jit.tracing import trace from megengine.module import ConvTranspose2d, ConvTranspose3d, LayerNorm _assert_allclose = partial(np.testing.assert_allclose, atol=5e-6, rtol=5e-6) def test_where(): maskv0 = np.array([[1, 0], [0, 1]], dtype=np.bool_) xv0 = np.array([[1, np.inf], [np.nan, 4]], dtype=np.float32) yv0 = np.array([[5, 6], [7, 8]], dtype=np.float32) maskv1 = np.array([[1, 0, 1], [1, 0, 0], [1, 1, 0]], dtype=np.bool_) xv1 = np.array([[1, np.inf, 2], [0, np.nan, 4], [1, 5, 7]], dtype=np.float32) yv1 = np.array([[5, 6, 9], [2, 7, 8], [2, 1, 9]], dtype=np.float32) maskv2 = np.array([1, 1, 1], dtype=np.bool_) xv2 = np.array([1, 3, 2], dtype=np.float32) yv2 = np.array([5, 6, 9], dtype=np.float32) maskv3 = np.array([0, 0, 0], dtype=np.bool_) xv3 = np.array([1, 3, 2], dtype=np.float32) yv3 = np.array([5, 6, 9], dtype=np.float32) maskv4 = np.array(1, dtype=np.bool_) xv4 = np.array(1, dtype=np.float32) yv4 = np.array(0, dtype=np.float32) cases = [ {"input": [maskv0, xv0, yv0]}, {"input": [maskv1, xv1, yv1]}, {"input": [maskv2, xv2, yv2]}, {"input": [maskv3, xv3, yv3]}, {"input": [maskv4, xv4, yv4]}, ] opr_test(cases, F.where, ref_fn=np.where, test_trace=True) def test_dropout(): from megengine.autodiff import GradManager from megengine.core._imperative_rt.ops import set_global_rng_seed def test_dropout_with_shape(shape, rate): data = tensor(np.ones(shape, dtype=np.float32)) gm = GradManager().attach([data]) with gm: out = F.nn.dropout(data, rate, training=True) gm.backward(out, tensor(np.ones(shape, dtype=np.float32))) if len(shape) != 0: assert not out.numpy().all() np.testing.assert_allclose(out.numpy(), data.grad.numpy(), 1e-7, 1e-7) def test_multiple_dropout(shape, rate): data = tensor(np.ones(shape, dtype=np.float32)) gm = GradManager().attach([data]) with gm: out1 = F.nn.dropout(data, rate, training=True) out2 = F.nn.dropout(out1, rate, training=True) out3 = F.nn.dropout(out2, rate, training=True) gm.backward(out3, tensor(np.ones(shape, dtype=np.float32))) np.testing.assert_allclose(out3.numpy(), data.grad.numpy(), 1e-7, 1e-7) def test_dropout_seed(shape, rate): data = tensor(np.random.randn(*shape), dtype="float32") set_global_rng_seed(111) out1 = F.nn.dropout(data, rate, training=True) out2 = F.nn.dropout(data, rate, training=True) assert not (out1.numpy() == out2.numpy()).all() set_global_rng_seed(111) out3 = F.nn.dropout(data, rate, training=True) assert (out1.numpy() == out3.numpy()).all() set_global_rng_seed(222) out4 = F.nn.dropout(data, rate, training=True) assert not (out1.numpy() == out4.numpy()).all() test_dropout_with_shape([], 0.4) test_dropout_with_shape([13, 17, 63, 21], 0.4) test_dropout_with_shape([16, 32, 64], 0.3) test_multiple_dropout([1024], 0.2) test_dropout_seed([16, 32], 0.2) def test_matinv(): shape1 = (5, 5) shape2 = (3, 9, 9) data1 = np.random.random(shape1).astype("float32") data2 = np.random.random(shape2).astype("float32") # make matrix diagonally dominant for numerical stability data1 += (np.eye(shape1[0]) * shape1[0]).astype("float32") data2 += np.broadcast_to((np.eye(shape2[1]) * shape2[1]).astype("float32"), shape2) cases = [ {"input": data1}, {"input": data2}, ] opr_test( cases, F.matinv, compare_fn=lambda x, y: np.testing.assert_allclose(x.numpy(), y, rtol=1e-4), ref_fn=np.linalg.inv, ) def test_matmul(): shape1 = 3 shape2 = 3 shape3 = (3, 5) shape4 = (5, 6) data1 = np.random.random(shape1).astype("float32") data2 = np.random.random(shape2).astype("float32") data3 = np.random.random(shape3).astype("float32") data4 = np.random.random(shape4).astype("float32") cases = [ {"input": [data1, data2]}, {"input": [data2, data3]}, {"input": [data3, data4]}, ] opr_test(cases, F.matmul, ref_fn=np.matmul) batch_size = 10 shape1 = (2,) shape2 = (batch_size, 2, 3) shape3 = (batch_size, 3, 4) shape4 = (batch_size, 10, 4, 2) shape5 = (batch_size, 10, 2, 4) data1 = np.random.random(shape1).astype("float32") data2 = np.random.random(shape2).astype("float32") data3 = np.random.random(shape3).astype("float32") data4 = np.random.random(shape4).astype("float32") data5 = np.random.random(shape5).astype("float32") cases = [ {"input": [data1, data2]}, {"input": [data2, data3]}, {"input": [data3, data4]}, {"input": [data4, data5]}, ] opr_test(cases, F.matmul, ref_fn=np.matmul) opr_test( [{"input": [data1, data4]}], F.matmul, ref_fn=lambda x, y: np.matmul(x, y.transpose(0, 1, 3, 2)), transpose_b=True, ) opr_test( [{"input": [data3, data2]}], F.matmul, ref_fn=lambda x, y: np.matmul(x.transpose(0, 2, 1), y.transpose(0, 2, 1)), transpose_a=True, transpose_b=True, ) @pytest.mark.parametrize( "shape_a, shape_b", [((0,), (0,)), ((10, 0), (0, 10)), ((3, 10, 0), (3, 0, 10)),], ) @pytest.mark.parametrize("is_symbolic", [None, True, False]) def test_matmul_empty_tensor(shape_a, shape_b, is_symbolic): def func(a, b): return F.matmul(a, b) if is_symbolic is not None: func = jit.trace(symbolic=is_symbolic)(func) a = tensor(np.random.randn(*shape_a)) b = tensor(np.random.randn(*shape_b)) for _ in range(3): out = func(a, b) assert np.all(out.numpy() == 0) if is_symbolic is None: break def test_interpolate(): def linear_interpolate(): inp = tensor(np.arange(1, 3, dtype=np.float32).reshape(1, 1, 2)) test_func = lambda inp: F.vision.interpolate( inp, scale_factor=2.0, mode="linear" ) ref_func = lambda inp: F.vision.interpolate(inp, 4, mode="linear").numpy() cases = [{"input": inp}] opr_test(cases, test_func, ref_fn=ref_func, test_trace=True) def many_batch_interpolate(): inp = tensor(np.arange(1, 9, dtype=np.float32).reshape(2, 1, 2, 2)) test_func = lambda inp: F.vision.interpolate(inp, scale_factor=2.0) ref_func = lambda inp: F.vision.interpolate(inp, [4, 4]).numpy() cases = [{"input": inp}] opr_test(cases, test_func, ref_fn=ref_func, test_trace=True) def assign_corner_interpolate(): inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2)) test_func = lambda inp: F.vision.interpolate(inp, [4, 4]) ref_func = lambda inp: F.vision.interpolate(inp, scale_factor=2.0).numpy() cases = [{"input": inp}] opr_test(cases, test_func, ref_fn=ref_func, test_trace=True) def error_shape_linear_interpolate(): inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2)) with pytest.raises(ValueError): F.vision.interpolate(inp, scale_factor=2.0, mode="linear") def inappropriate_scale_linear_interpolate(): inp = tensor(np.arange(1, 3, dtype=np.float32).reshape(1, 1, 2)) with pytest.raises(ValueError): F.vision.interpolate(inp, scale_factor=[2.0, 3.0], mode="linear") linear_interpolate() many_batch_interpolate() assign_corner_interpolate() error_shape_linear_interpolate() # inappropriate_scale_linear_interpolate() def _save_to(self, name="grad"): def callback(grad): setattr(self, name, grad) return callback def _gen_roi_inp(): inp_feat = np.random.randn(2, 32, 256, 256) rois = np.zeros((4, 5)) rois[:, 0] = [0, 0, 1, 1] rois[:, 1:3] = np.random.rand(4, 2) * 100 rois[:, 3:] = np.random.rand(4, 2) * 100 + 150 inp_feat = tensor(inp_feat) rois = tensor(rois) return inp_feat, rois def test_roi_align(): inp_feat, rois = _gen_roi_inp() with Grad() as grad: grad.wrt(inp_feat, callback=_save_to(inp_feat)) output_shape = (7, 7) out_feat = F.vision.roi_align( inp_feat, rois, output_shape=output_shape, mode="average", spatial_scale=1.0 / 4, sample_points=2, aligned=True, ) assert make_shape_tuple(out_feat.shape) == ( rois.shape[0], inp_feat.shape[1], *output_shape, ) grad(out_feat, tensor(F.ones_like(out_feat))) assert make_shape_tuple(inp_feat.grad.shape) == make_shape_tuple(inp_feat.shape) @pytest.mark.parametrize("shapes", [((2, 0, 26, 26), (4, 5)), ((2, 3, 26, 26), (0, 5))]) @pytest.mark.parametrize("is_tracing", [False, True]) def test_roi_align_empty(shapes, is_tracing): inp_feat = tensor(np.random.randn(*(shapes[0]))) rois = tensor(np.random.random(shapes[1])) output_shape = (7, 7) def func(inp, rois): out_feat = F.vision.roi_align( inp_feat, rois, output_shape=output_shape, mode="average", spatial_scale=1.0 / 4, sample_points=2, aligned=True, ) return out_feat if is_tracing: func = jit.trace(func) for _ in range(3): out_feat = func(inp_feat, rois) assert make_shape_tuple(out_feat.shape) == ( rois.shape[0], inp_feat.shape[1], *output_shape, ) def _gen_correlation(random=True, constant=1, image_shape=(2, 1, 160, 160)): if random: inp_feat1 = np.random.randn( image_shape[0], image_shape[1], image_shape[2], image_shape[3] ) inp_feat2 = np.random.randn( image_shape[0], image_shape[1], image_shape[2], image_shape[3] ) else: inp_feat1 = np.ones(image_shape) * constant inp_feat2 = np.ones(image_shape) * constant return tensor(inp_feat1), tensor(inp_feat2) def test_correlation(): ##test case 0 check the grad shape data1, data2 = _gen_correlation() with Grad() as grad: grad.wrt(data1, callback=_save_to(data1)) out_feat = F.vision.correlation( data1, data2, kernel_size=5, max_displacement=4, stride1=2, stride2=2, pad_size=2, is_multiply=True, ) grad(out_feat, tensor(F.ones_like(out_feat))) assert make_shape_tuple(data1.grad.shape) == make_shape_tuple(data1.shape) ##test case 1 from https://github.com/NVIDIA/flownet2-pytorch/issues/194 data1, data2 = _gen_correlation(random=False, image_shape=(1, 1, 3, 3)) out_feat = F.vision.correlation( data1, data2, kernel_size=3, max_displacement=0, stride1=1, stride2=1, pad_size=0, is_multiply=True, ) assert abs(out_feat.sum() - 1) < 1e-9 ##test case 2 check same image subduction data1, data2 = _gen_correlation(random=False, image_shape=(1, 1, 3, 3)) out_feat = F.vision.correlation( data1, data2, kernel_size=3, max_displacement=0, stride1=1, stride2=1, pad_size=0, is_multiply=False, ) assert out_feat.sum() < 1e-9 ##test case 3 check same image subduction data1, data2 = _gen_correlation(random=False, image_shape=(1, 1, 3, 3)) out_feat = F.vision.correlation( data1, data2, kernel_size=3, max_displacement=0, stride1=1, stride2=1, pad_size=0, is_multiply=False, ) assert out_feat.sum() < 1e-9 ##test case 4 check correlation data1, _ = _gen_correlation( random=False, image_shape=(1, 1, 220, 220), constant=2.0 ) _, data2 = _gen_correlation( random=False, image_shape=(1, 1, 220, 220), constant=1.0 ) out_feat = F.vision.correlation( data1, data2, kernel_size=3, max_displacement=2, stride1=1, stride2=2, pad_size=0, is_multiply=False, ) assert abs(out_feat.mean() - 1) < 1e-9 def test_roi_pooling(): inp_feat, rois = _gen_roi_inp() with Grad() as grad: grad.wrt(inp_feat, callback=_save_to(inp_feat)) output_shape = (7, 7) out_feat = F.vision.roi_pooling( inp_feat, rois, output_shape=output_shape, mode="max", scale=1.0 / 4, ) assert make_shape_tuple(out_feat.shape) == ( rois.shape[0], inp_feat.shape[1], *output_shape, ) grad(out_feat, tensor(F.ones_like(out_feat))) assert make_shape_tuple(inp_feat.grad.shape) == make_shape_tuple(inp_feat.shape) def test_adaptive_avg_pool2d(): inp = tensor(np.arange(0, 16, dtype=np.float32).reshape(1, 1, 4, 4)) oshp = (2, 2) with Grad() as grad: grad.wrt(inp, callback=_save_to(inp)) outp = F.adaptive_avg_pool2d(inp, oshp,) assert make_shape_tuple(outp.shape) == (inp.shape[0], inp.shape[1], *oshp,) np.testing.assert_equal( outp.numpy(), np.array([[[[2.5, 4.5], [10.5, 12.5]]]], dtype=np.float32) ) grad(outp, tensor(F.ones_like(outp))) assert make_shape_tuple(inp.grad.shape) == make_shape_tuple(inp.shape) np.testing.assert_equal( inp.grad.numpy(), np.array( [ [ [ [0.25, 0.25, 0.25, 0.25], [0.25, 0.25, 0.25, 0.25], [0.25, 0.25, 0.25, 0.25], [0.25, 0.25, 0.25, 0.25], ] ] ], dtype=np.float32, ), ) def test_adaptive_max_pool2d(): inp = tensor(np.arange(0, 16, dtype=np.float32).reshape(1, 1, 4, 4)) oshp = (2, 2) with Grad() as grad: grad.wrt(inp, callback=_save_to(inp)) outp = F.adaptive_max_pool2d(inp, oshp,) assert make_shape_tuple(outp.shape) == (inp.shape[0], inp.shape[1], *oshp,) np.testing.assert_equal( outp.numpy(), np.array([[[[5, 7], [13, 15]]]], dtype=np.float32) ) grad(outp, tensor(F.ones_like(outp))) assert make_shape_tuple(inp.grad.shape) == make_shape_tuple(inp.shape) np.testing.assert_equal( inp.grad.numpy(), np.array( [ [ [ [0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 1.0], [0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 1.0], ] ] ], dtype=np.float32, ), ) def test_one_hot(): def onehot_low_dimension(): inp = tensor(np.arange(1, 4, dtype=np.int32)) out = F.one_hot(inp, num_classes=4) np.testing.assert_allclose( out.numpy(), np.eye(4, dtype=np.int32)[np.arange(1, 4, dtype=np.int32)] ) def onehot_high_dimension(): arr = np.array( [[3, 2, 4, 4, 2, 4, 0, 4, 4, 1], [4, 1, 1, 3, 2, 2, 4, 2, 4, 3]], dtype=np.int32, ) inp = tensor(arr) out = F.one_hot(inp, 10) np.testing.assert_allclose(out.numpy(), np.eye(10, dtype=np.int32)[arr]) onehot_low_dimension() onehot_high_dimension() def test_interpolate_fastpath(): # check shape test_cases = [ [(1, 1, 10, 10), (5, 5)], [(1, 3, 10, 10), (20, 20)], [(10, 1, 10, 10), (1, 1)], [(10, 10, 1, 1), (10, 10)], ] for inp_shape, target_shape in test_cases: x = tensor(np.random.randn(*inp_shape), dtype=np.float32) out = F.vision.interpolate(x, target_shape, mode="bilinear") assert out.shape[0] == x.shape[0] and out.shape[1] == x.shape[1] assert out.shape[2] == target_shape[0] and out.shape[3] == target_shape[1] # check value x = tensor(np.ones((3, 3, 10, 10)), dtype=np.float32) out = F.vision.interpolate(x, (15, 5), mode="bilinear") np.testing.assert_equal(out.numpy(), np.ones((3, 3, 15, 5)).astype(np.float32)) np_x = np.arange(32) x = tensor(np_x).astype(np.float32).reshape(1, 1, 32, 1) out = F.vision.interpolate(x, (1, 1), mode="bilinear") np.testing.assert_equal(out.item(), np_x.mean()) @pytest.mark.parametrize("dt", [np.float32, np.int8, np.uint8, np.float16]) def test_warp_perspective(dt): inp_shape = (1, 1, 4, 4) x = tensor(np.arange(16, dtype=dt).reshape(inp_shape)) M_shape = (1, 3, 3) # M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1) M = tensor( np.array( [[1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [0.0, 0.0, 1.0]], dtype=np.float32 ).reshape(M_shape) ) outp = F.vision.warp_perspective(x, M, (2, 2)) np.testing.assert_equal(outp.numpy(), np.array([[[[5, 6], [9, 10]]]], dtype=dt)) def test_warp_affine_grad(): dy_np = np.arange(1, 10, dtype=np.float32).reshape(1, 1, 3, 3) x_np = np.arange(1, 10, dtype=np.float32).reshape(1, 1, 3, 3) mat_np_affine = np.array([[[0.5, 0, 0], [0, 0.5, 0],]]).astype("float32") mat_np_perspective = np.array([[[0.5, 0, 0], [0, 0.5, 0], [0, 0, 1]]]).astype( "float32" ) dmat_affine = Tensor(np.ones((1, 2, 3), dtype=np.float32)) dy_affine = Tensor(dy_np) x_affine = Tensor(x_np) mat_affine = Tensor(mat_np_affine) target_shape_affine = x_affine.shape[2:] dmat_perspective = Tensor(np.ones((1, 3, 3), dtype=np.float32)) dy_perspective = Tensor(dy_np) x_perspective = Tensor(x_np) mat_perspective = Tensor(mat_np_perspective) target_shape_perspective = x_perspective.shape[2:] gm = GradManager().attach([x_affine, mat_affine, x_perspective, mat_perspective]) with gm: y_affine = F.warp_affine( x_affine, mat_affine, target_shape_affine, format="NCHW" ) y_perspective = F.warp_perspective( x_perspective, mat_perspective, target_shape_perspective ) gm.backward([y_affine, y_perspective], [dy_affine, dy_perspective]) np.testing.assert_allclose( x_affine.grad.numpy(), x_perspective.grad.numpy(), rtol=1e-5, atol=1e-5 ) np.testing.assert_allclose( mat_affine.grad.numpy(), mat_perspective.grad.numpy()[0:1, 0:2, 0:3], rtol=1e-5, atol=1e-5, ) @pytest.mark.parametrize("dt", [np.float32, np.int8, np.uint8, np.float16]) def test_warp_perspective_mat_idx(dt): inp_shape = (2, 1, 4, 4) x = tensor(np.arange(32, dtype=dt).reshape(inp_shape)) M_shape = (1, 3, 3) # M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1) M = tensor( np.array( [[1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [0.0, 0.0, 1.0]], dtype=np.float32 ).reshape(M_shape) ) M = F.concat([M,] * 4, 0) outp = F.vision.warp_perspective(x, M, (2, 2), mat_idx=[0, 1, 1, 0]) np.testing.assert_equal( outp.numpy(), np.array( [ [[[5, 6], [9, 10]]], [[[21, 22], [25, 26]]], [[[21, 22], [25, 26]]], [[[5, 6], [9, 10]]], ], dtype=dt, ), ) def test_warp_affine(): inp_shape = (1, 3, 3, 3) x = tensor(np.arange(27, dtype=np.float32).reshape(inp_shape)) weightv = [[[1.26666667, 0.6, -83.33333333], [-0.33333333, 1, 66.66666667]]] outp = F.vision.warp_affine(x, tensor(weightv), (2, 2), border_mode="wrap") res = np.array( [ [ [[7.875, 8.875, 9.875], [8.90625, 9.90625, 10.90625]], [[18.75, 19.75, 20.75], [14.90625, 15.90625, 16.90625]], ] ], dtype=np.float32, ) if not is_cuda_available(): np.testing.assert_almost_equal(outp.numpy(), res, 5) def test_remap(): inp_shape = (1, 1, 4, 4) inp = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape)) map_xy_shape = (1, 2, 2, 2) map_xy = tensor( np.array( [[[1.0, 0.0], [0.0, 1.0]], [[0.0, 1.0], [0.0, 1.0]]], dtype=np.float32 ).reshape(map_xy_shape) ) outp = F.vision.remap(inp, map_xy) np.testing.assert_equal( outp.numpy(), np.array([[[[1.0, 4.0], [4.0, 4.0]]]], dtype=np.float32) ) def test_binary_cross_entropy(): data1_shape = (2, 2) label1_shape = (2, 2) data2_shape = (2, 3) label2_shape = (2, 3) def sigmoid(x): return 1 / (1 + np.exp(-x)) def compare_fn(x, y): np.testing.assert_allclose(x.numpy(), y, atol=5e-4) np.random.seed(123) data1 = np.random.uniform(size=data1_shape).astype(np.float32) label1 = np.random.uniform(size=label1_shape).astype(np.float32) expect1 = np.array(0.6361, dtype=np.float32) np.random.seed(123) data2 = np.random.uniform(size=data2_shape).astype(np.float32) label2 = np.random.uniform(size=label2_shape).astype(np.float32) expect2 = np.array(0.6750, dtype=np.float32) cases = [ {"input": [data1, label1], "output": expect1,}, {"input": [data2, label2], "output": expect2,}, ] opr_test(cases, F.nn.binary_cross_entropy, compare_fn=compare_fn) cases = [ {"input": [sigmoid(data1), label1], "output": expect1,}, {"input": [sigmoid(data2), label2], "output": expect2,}, ] opr_test( cases, partial(F.nn.binary_cross_entropy, with_logits=False), compare_fn=compare_fn, ) def test_hinge_loss(): np.random.seed(123) # case with L1 norm cases = [] for shape in [(2, 2), (2, 3)]: data = np.random.uniform(size=shape).astype(np.float32) label = 2 * np.random.randint(0, 1, size=shape).astype(np.float32) - 1 expect = np.clip(0, np.inf, 1 - data * label).sum(axis=1).mean() cases.append({"input": [data, label], "output": expect}) opr_test(cases, F.nn.hinge_loss) # cases with L2 norm cases = [] for shape in [(2, 2), (2, 3)]: data = np.random.uniform(size=shape).astype(np.float32) label = 2 * np.random.randint(0, 1, size=shape).astype(np.float32) - 1 expect = ((np.clip(0, np.inf, 1 - data * label) ** 2).sum(axis=1)).mean() cases.append({"input": [data, label], "output": expect}) def hinge_loss_with_l2_norm(pred, label): return F.nn.hinge_loss(pred, label, "L2") opr_test(cases, hinge_loss_with_l2_norm) @pytest.mark.parametrize("is_symbolic", [None, False, True]) def test_nms(is_symbolic): def fn(inp, scores): return F.vision.nms( inp, scores=scores, iou_thresh=0.5, max_output=None if is_symbolic is None else 4, ) if is_symbolic is not None: fn = jit.trace(symbolic=is_symbolic)(fn) x = np.array( [ [0, 0, 100, 100], [10, 10, 100, 100], [50, 50, 100, 100], [100, 100, 150, 150], ], dtype=np.float32, ) inp = tensor(x) scores = tensor([0.5, 0.8, 0.9, 0.6], dtype=np.float32) for _ in range(3): result = fn(inp, scores=scores) np.testing.assert_equal(result.numpy(), np.array([2, 1, 3], dtype=np.int32)) x = np.array([], dtype=np.float32,).reshape(0, 4) inp = tensor(x) scores = tensor([], dtype=np.float32) for _ in range(3): result = fn(inp, scores=scores) np.testing.assert_equal(result.numpy(), np.array([], dtype=np.int32)) @pytest.mark.skipif( get_device_count("gpu") > 0, reason="cuda does not support nchw int8" ) def test_conv_bias(): inp_scale = 1.5 w_scale = 2.5 outp_scale = 1.5 inp_dtype = dtype.qint8(inp_scale) w_dtype = dtype.qint8(w_scale) b_dtype = dtype.qint32(inp_scale * w_scale) out_dtype = dtype.qint8(outp_scale) def run( N, IC, OC, IH, IW, KH, KW, PH, PW, SH, SW, has_bias=True, nonlinear_mode="identity", ): inp_v = np.random.normal(size=(N, IC, IH, IW)) w_v = np.random.normal(size=(OC, IC, KH, KW)) b_v = np.random.normal(size=(1, OC, 1, 1)) inp_scale = dtype.get_scale(inp_dtype) w_scale = dtype.get_scale(w_dtype) b_scale = dtype.get_scale(b_dtype) inpv = dtype.convert_to_qint8(inp_v * inp_scale, inp_dtype) wv = dtype.convert_to_qint8(w_v * w_scale, w_dtype) bv = dtype.convert_to_qint32(b_v * b_scale, b_dtype) inp_int8 = tensor(inpv, dtype=inp_dtype) w_int8 = Parameter(wv, dtype=w_dtype) b_int32 = Parameter(bv, dtype=b_dtype) inp_fp32 = inp_int8.astype("float32") w_fp32 = w_int8.astype("float32") b_fp32 = b_int32.astype("float32") def convert_to_nchw4(var): var = F.reshape( var, (var.shape[0], var.shape[1] // 4, 4, var.shape[2], var.shape[3]) ) var = F.transpose(var, (0, 1, 3, 4, 2)) return var def run_conv2d(inp, w, b): O = F.conv2d( inp, w, b if has_bias else None, stride=(SH, SW), padding=(PH, PW), ) if nonlinear_mode == "relu": return F.relu(O) else: return O def run_conv_bias(inp, w, b, format="NCHW"): b = b if has_bias else Parameter(np.zeros_like(b.numpy())) if format == "NCHW4": inp = convert_to_nchw4(inp) w = convert_to_nchw4(w) b = convert_to_nchw4(b) return F.quantized.conv_bias_activation( inp, w, b, stride=(SH, SW), padding=(PH, PW), dtype=out_dtype, nonlinear_mode=nonlinear_mode, ) format = "NCHW4" if is_cuda_available() else "NCHW" expected = run_conv2d(inp_fp32, w_fp32, b_fp32) expected = expected.astype(out_dtype).astype("float32") result = run_conv_bias(inp_int8, w_int8, b_int32, format=format).astype( "float32" ) if format == "NCHW4": result = F.transpose(result, (0, 1, 4, 2, 3)) expected = F.flatten(expected) result = F.flatten(result) np.testing.assert_allclose(result.numpy(), expected.numpy(), atol=outp_scale) run(1, 4, 4, 24, 33, 1, 1, 2, 3, 1, 1, False) run(10, 12, 24, 46, 46, 1, 1, 2, 1, 3, 1, False) run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, False) run(1, 4, 4, 24, 33, 1, 1, 2, 3, 1, 1) run(10, 12, 24, 46, 46, 1, 1, 2, 1, 3, 1) run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2) run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, False, "relu") run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, True, "relu") @pytest.mark.skipif(get_device_count("gpu") > 0, reason="no int8 algorithm on cuda") def test_batch_conv_bias(): inp_scale = 1.5 w_scale = 2.5 outp_scale = 1.5 inp_dtype = dtype.qint8(inp_scale) w_dtype = dtype.qint8(w_scale) b_dtype = dtype.qint32(inp_scale * w_scale) out_dtype = dtype.qint8(outp_scale) def run( N, IC, OC, IH, IW, KH, KW, PH, PW, SH, SW, has_bias=True, ): inp_v = np.random.normal(size=(N, IC, IH, IW)) w_v = np.random.normal(size=(N, OC, IC, KH, KW)) b_v = np.random.normal(size=(1, OC, 1, 1)) inp_scale = dtype.get_scale(inp_dtype) w_scale = dtype.get_scale(w_dtype) b_scale = dtype.get_scale(b_dtype) inpv = dtype.convert_to_qint8(inp_v * inp_scale, inp_dtype) wv = dtype.convert_to_qint8(w_v * w_scale, w_dtype) bv = dtype.convert_to_qint32(b_v * b_scale, b_dtype) inp_int8 = tensor(inpv, dtype=inp_dtype) w_int8 = Parameter(wv, dtype=w_dtype) b_int32 = Parameter(bv, dtype=b_dtype) inp_fp32 = inp_int8.astype("float32") w_fp32 = w_int8.astype("float32") b_fp32 = b_int32.astype("float32") def run_batch_conv_bias(inp, w, b): b = b if has_bias else Parameter(np.zeros_like(b.numpy())) result = F.quantized.batch_conv_bias_activation( inp, w, b, stride=(SH, SW), padding=(PH, PW), dtype=out_dtype, ) return result.astype("float32") expected = F.conv2d(inp_fp32, w_fp32[0], b_fp32 if has_bias else None)[0] expected = expected.astype(out_dtype).astype("float32") expected = F.flatten(expected) result = run_batch_conv_bias(inp_int8, w_int8, b_int32) result = F.flatten(result) np.testing.assert_allclose(result.numpy(), expected.numpy(), atol=outp_scale) run(1, 4, 4, 5, 5, 3, 3, 0, 0, 1, 1, True) @pytest.mark.parametrize("bias", [True, False]) def test_region_restricted_conv_forward_backward_naive(bias): import megengine as mge import megengine.module as M from megengine.autodiff import GradManager handle = "cpu0" src_1 = np.arange(8).reshape(1, 2, 2, 2).astype(np.float32) filter_1 = np.arange(8).reshape(2, 1, 1, 2, 2).astype(np.float32) rin_1 = np.array([1, 1, 1, 1]).reshape(1, 2, 2).astype(np.int32) rout_1 = np.array([1]).reshape(1, 1, 1).astype(np.int32) cpu_src = tensor(src_1, device=handle) cpu_filter = tensor(filter_1, device=handle) gm = GradManager().attach([cpu_src, cpu_filter]) cpu_bias = ( tensor(np.ones((1, 2, 1, 1), dtype=np.float32), device=handle) if bias else None ) with gm: cpu_out = F.region_restricted_conv( cpu_src, cpu_filter, tensor(rin_1, device=handle), tensor(rout_1, device=handle), bias=cpu_bias, groups=2, ) gm.backward(cpu_out, tensor(np.ones((1, 2, 1, 1)), device=handle)) if cpu_bias is not None: cpu_out = cpu_out - cpu_bias np.testing.assert_allclose(cpu_out, np.array([14, 126]).reshape(1, 2, 1, 1)) np.testing.assert_allclose( cpu_src.grad, np.array([0, 1, 2, 3, 4, 5, 6, 7]).reshape(1, 2, 2, 2) ) np.testing.assert_allclose( cpu_filter.grad, np.array([0, 1, 2, 3, 4, 5, 6, 7]).reshape(2, 1, 1, 2, 2) ) @pytest.mark.skipif( not is_cuda_available(), reason="rrconv cuda kernel requires cuda available" ) @pytest.mark.parametrize("bias, groups", [(True, 1), (True, 3), (False, 1), (False, 3)]) def test_region_restricted_conv_forward_backward_cuda(bias, groups): import megengine as mge import megengine.module as M from megengine.autodiff import GradManager # params handle = "gpu0" N = 1 GROUP = groups FH = FW = 2 IH = IW = 2 OH = OW = 1 ICPG = OCPG = 1 grad_shape = (N, GROUP * ICPG, IH, IW) src_shape = grad_shape filter_shape = (GROUP, OCPG, ICPG, FH, FW) diff_shape = (N, GROUP * OCPG, OH, OW) rin_shape = (N, IH, IW) rout_shape = (N, OH, OW) def reduce(shape): mul = 1 for x in shape: mul *= x return mul def get_groundtruth(): src = tensor( np.arange(reduce(src_shape)).reshape(src_shape).astype(np.float32), device="cpu0", ) filter = tensor(np.ones(filter_shape).astype(np.float32), device="cpu0") rin = tensor(np.ones(rin_shape).astype(np.int32), device="cpu0") rout = tensor(np.ones(rout_shape).astype(np.int32), device="cpu0") bias_cpu = ( tensor(np.ones((1, GROUP * OCPG, 1, 1)).astype(np.float32), device="cpu0") if bias else None ) gm = GradManager().attach([src, filter]) with gm: expected_out = F.region_restricted_conv( src, filter, rin, rout, bias=bias_cpu, groups=GROUP ) gm.backward( expected_out, tensor(np.ones(diff_shape, dtype=np.float32), device="cpu0"), ) return src, filter, expected_out expected_src, expected_filter, expected_out = get_groundtruth() src = tensor( np.arange(reduce(src_shape)).reshape(src_shape).astype(np.float32), device=handle, ) filter = tensor(np.ones(filter_shape).astype(np.float32), device=handle) rin = tensor(np.ones(rin_shape).astype(np.int32), device=handle) rout = tensor(np.ones(rout_shape).astype(np.int32), device=handle) bias_gpu = ( tensor(np.ones((1, GROUP * OCPG, 1, 1)).astype(np.float32), device=handle) if bias else None ) gm = GradManager().attach([src, filter]) with gm: gpu_out = F.region_restricted_conv( src, filter, rin, rout, bias=bias_gpu, groups=GROUP ) gm.backward(gpu_out, tensor(np.ones(diff_shape), device=handle)) np.testing.assert_allclose(src.grad, expected_src.grad) np.testing.assert_allclose(filter.grad, expected_filter.grad) np.testing.assert_allclose(gpu_out, expected_out) @pytest.mark.skipif( not is_cuda_available(), reason="rrconv cuda kernel requires cuda available" ) @pytest.mark.parametrize("bias, groups", [(True, 1), (True, 3), (False, 1), (False, 3)]) def test_region_restricted_conv_forward_backward_uint8(bias, groups): import megengine as mge import megengine.module as M from megengine.autodiff import GradManager # params handle = "gpu0" N = 1 GROUP = groups FH = FW = 1 IH = IW = 4 OH = OW = 4 ICPG = OCPG = 1 grad_shape = (N, GROUP * ICPG, IH, IW) src_shape = grad_shape filter_shape = (GROUP, OCPG, ICPG, FH, FW) diff_shape = (N, GROUP * OCPG, OH, OW) rin_shape = (N, IH, IW) rout_shape = (N, OH, OW) def reduce(shape): mul = 1 for x in shape: mul *= x return mul def get_groundtruth(): src = tensor( np.arange(reduce(src_shape)).reshape(src_shape).astype(np.float32), device="cpu0", ) filter = tensor(np.ones(filter_shape).astype(np.float32), device="cpu0") rin = tensor(np.ones(rin_shape).astype(np.int32), device="cpu0") rout = tensor(np.ones(rout_shape).astype(np.int32), device="cpu0") bias_cpu = ( tensor(np.ones((1, GROUP * OCPG, 1, 1)).astype(np.float32), device="cpu0") if bias else None ) gm = GradManager().attach([src, filter]) with gm: expected_out = F.region_restricted_conv( src, filter, rin, rout, bias=bias_cpu, groups=GROUP ) gm.backward( expected_out, tensor(np.ones(diff_shape, dtype=np.float32), device="cpu0"), ) return src, filter, expected_out expected_src, expected_filter, expected_out = get_groundtruth() # forward and dgrad/wgrad src = tensor( np.arange(reduce(src_shape)).reshape(src_shape).astype(np.float32), device=handle, ) filter = tensor(np.ones(filter_shape).astype(np.float32), device=handle) rin = tensor(np.ones(rin_shape).astype(np.uint8), device=handle) rout = tensor(np.ones(rout_shape).astype(np.uint8), device=handle) bias_gpu = ( tensor(np.ones((1, GROUP * OCPG, 1, 1)).astype(np.float32), device=handle) if bias else None ) gm = GradManager().attach([src, filter]) with gm: gpu_out = F.region_restricted_conv( src, filter, rin, rout, bias=bias_gpu, groups=GROUP ) gm.backward( gpu_out, tensor(np.ones(diff_shape, dtype=np.float32), device=handle) ) # assert uint8 gpu result close to cpu result np.testing.assert_allclose(src.grad, expected_src.grad) np.testing.assert_allclose(filter.grad, expected_filter.grad) np.testing.assert_allclose(gpu_out, expected_out) def test_conv2d_autocast(): """check amp's result is equal to manually converted result""" amp.enabled = True inp = tensor(np.random.randn(1, 3, 224, 224), dtype=np.float32) weight = tensor(np.random.randn(64, 3, 7, 7), dtype=np.float32) out = F.conv2d(inp, weight, None, (2, 2), (3, 3), (1, 1), 1) amp.enabled = False expected = F.conv2d( inp.astype("float16"), weight.astype("float16"), None, (2, 2), (3, 3), (1, 1), 1, compute_mode="float32", ) assert out.dtype == np.float16 assert expected.dtype == np.float16 np.testing.assert_allclose(out.numpy(), expected.numpy()) def test_conv2d_zero_stride_numpy_array(): inp = np.random.randn(3, 224, 224).astype(np.float32) inp = inp[np.newaxis, :] inp = tensor(inp, dtype=np.float32) weight = tensor(np.random.randn(16, 3, 3, 3), dtype=np.float32) out = F.conv2d(inp, weight, None, (2, 2), (3, 3), (1, 1), 1) def test_conv3d_zero_stride_numpy_array(): inp = np.random.randn(3, 224, 224, 224).astype(np.float32) inp = inp[np.newaxis, :] inp = tensor(inp, dtype=np.float32) weight = tensor(np.random.randn(16, 3, 3, 3, 3), dtype=np.float32) out = F.conv3d(inp, weight, None, (2, 2, 2), (3, 3, 3), (1, 1, 1), 1) out.numpy() @pytest.mark.parametrize("bias", [True, False]) def test_conv1d(bias): inp = tensor(np.ones((2, 2, 4), dtype=np.float32)) weight = tensor(np.ones((3, 2, 2), dtype=np.float32)) bias = tensor(np.ones((1, 3, 1), dtype=np.float32)) if bias else None out = F.conv1d(inp, weight, bias, 2, 0, 1, 1) np.testing.assert_equal( out.numpy(), np.array([[[5, 5], [5, 5], [5, 5]], [[5, 5], [5, 5], [5, 5]]], dtype=np.float32) if bias is not None else np.array( [[[4, 4], [4, 4], [4, 4]], [[4, 4], [4, 4], [4, 4]]], dtype=np.float32 ), ) def test_batchnorm2d_autocast(): """check amp's result is equal to manually converted result""" amp.enabled = True tshape = (1, 3, 224, 224) pshape = (1, 3, 1, 1) inp = tensor(np.random.randn(*tshape), dtype=np.float32) weight = tensor(np.ones(pshape, dtype=np.float32)) bias = tensor(np.zeros(pshape, dtype=np.float32)) out = F.batch_norm(inp, weight=weight, bias=bias, training=True, inplace=False) amp.enabled = False expected = F.batch_norm( inp.astype("float16"), weight=weight, bias=bias, training=True, inplace=False, ) assert out.dtype == np.float16 assert expected.dtype == np.float16 np.testing.assert_allclose(out.numpy(), expected.numpy()) @pytest.mark.parametrize("bias", [True, False]) def test_conv3d(bias): inp = tensor(np.ones((2, 2, 4, 4, 4), dtype=np.float32)) weight = tensor(np.ones((3, 2, 2, 2, 2), dtype=np.float32)) bias = tensor(np.ones((1, 3, 1, 1, 1), dtype=np.float32)) if bias else None out = F.conv3d(inp, weight, bias, 2, 0, 1, 1) target = np.ones((2, 3, 2, 2, 2), dtype=np.float32) * 16 target = target + 1 if bias is not None else target np.testing.assert_equal(out.numpy(), target) def test_condtake(): x = np.array([[1, 2, 3], [4, 5, 6]]) y = np.array([[True, False, True], [False, True, True]]) xx = tensor(x) yy = tensor(y) val, idx = F.cond_take(yy, xx) np.testing.assert_equal(val.numpy(), x[y]) np.testing.assert_equal(idx.numpy(), np.where(y.reshape(-1))[0]) @pytest.mark.parametrize("is_symbolic", [None, False, True]) def test_condtake(is_symbolic): shapes = [ (3, 3, 3), (0,), (3, 0, 3), ] def fn(mask, data): return F.cond_take(mask, data) if is_symbolic is not None: fn = jit.trace(symbolic=is_symbolic)(fn) for shp in shapes: x_np = np.random.randn(*shp).astype("float32") mask_np = x_np > 0 x = tensor(x_np) mask = tensor(mask_np) ref_out = x_np[mask_np] ref_idx = mask_np.flatten().nonzero()[0] for i in range(3): out, idx = fn(mask, x) np.testing.assert_equal(out.numpy(), ref_out) np.testing.assert_equal(idx.numpy(), ref_idx) if is_symbolic is None: break def test_condtake_is_same(): op1 = builtin.CondTake() op2 = builtin.CondTake() assert op1 == op2 def test_nms_is_same(): op1 = builtin.NMSKeep(0.7, 100) op2 = builtin.NMSKeep(0.7, 100) op3 = builtin.NMSKeep(0.8, 100) op4 = builtin.NMSKeep(0.7, 200) assert op1 == op2 assert op1 != op3 assert op1 != op4 assert op3 != op4 def test_argmxx_on_inf(): def run_argmax(): x = F.zeros((100, 100)) x[:] = -float("inf") idxs = F.argmax(x, axis=0) return idxs def run_argmin(): x = F.zeros((100, 100)) x[:] = float("inf") idxs = F.argmin(x, axis=0) return idxs assert all(run_argmax() >= 0) assert all(run_argmin() >= 0) def test_deformable_psroi_pooling(): inp = np.random.random((1, 256, 64, 64)).astype("float32") rois = np.random.random((1, 5)).astype("float32") trans = np.random.random((24, 2, 7, 7)).astype("float32") pooled_h = 7 pooled_w = 7 sample_per_part = 4 no_trans = False part_size = 7 spatial_scale = 1.0 / 64 trans_std = 0.1 y = F.deformable_psroi_pooling( tensor(inp), tensor(rois), tensor(trans), no_trans, part_size, pooled_h, pooled_w, sample_per_part, spatial_scale, trans_std, ) def test_cvt_color(): def rgb2gray(rgb): return np.dot(rgb[..., :3], [0.299, 0.587, 0.114]) def bgr2gray(bgr): return np.dot(bgr[..., :3], [0.114, 0.587, 0.299]) inp = np.random.randn(3, 3, 3, 3).astype(np.float32) out = np.expand_dims(rgb2gray(inp), 3).astype(np.float32) x = tensor(inp) y = F.vision.cvt_color(x, mode="RGB2GRAY") np.testing.assert_allclose(y.numpy(), out, atol=1e-5) out1 = np.expand_dims(bgr2gray(inp), 3).astype(np.float32) y1 = F.vision.cvt_color(x, mode="BGR2GRAY") np.testing.assert_allclose(y1.numpy(), out1, atol=1e-5) @pytest.mark.parametrize("val", [2, [2,], [2, 3]]) def test_ones(val): shp = tensor(val) np_shp = np.array(val) np.testing.assert_equal(F.ones(shp), np.ones(np_shp)) def test_assert_equal(): shape = (2, 3, 4, 5) x = F.ones(shape, dtype=np.float32) y = F.zeros(shape, dtype=np.float32) + 1.00001 z = F.utils._assert_equal(x, y) def test_assert_not_equal(): shape = (2, 3, 4, 5) x = F.ones(shape, dtype=np.float32) y = F.zeros(shape, dtype=np.float32) + 1.1 with pytest.raises(RuntimeError): z = F.utils._assert_equal(x, y) def test_neg_axis(): x = tensor(np.random.normal(0, 1, (32, 5))) y = F.argmax(x, axis=-1) yy = F.argmax(x, axis=1) np.testing.assert_equal(y.numpy(), yy.numpy()) y = F.argmax(x, axis=(-1, -2)) yy = F.argmax(x, axis=(0, 1)) np.testing.assert_equal(y.numpy(), yy.numpy()) y = F.argmin(x, axis=(-1, -2)) yy = F.argmin(x, axis=(0, 1)) np.testing.assert_equal(y.numpy(), yy.numpy()) def test_sliding_window(): N, C, H, W = 2, 3, 7, 8 inp = np.random.normal(size=(N, C, H, W)) ph, pw = 1, 2 sh, sw = 2, 1 wh, ww = 3, 2 dh, dw = 1, 3 s = lambda i, p, s, d, w: (i + p * 2 - (w - 1) * d - 1) // s + 1 inp_pad = np.zeros((N, C, H + ph * 2, W + pw * 2)) inp_pad[:, :, ph : H + ph, pw : W + pw] = inp gt_out = np.empty( (N, C, s(H, ph, sh, dh, wh), s(W, pw, sw, dw, ww), wh, ww), dtype=np.float32 ) for n, c, oh, ow in itertools.product(*map(range, gt_out.shape[:4])): ih, iw = oh * sh, ow * sw gt_out[n, c, oh, ow, :] = inp_pad[ n, c, ih : ih + (wh - 1) * dh + 1 : dh, iw : iw + (ww - 1) * dw + 1 : dw ] out = F.sliding_window( tensor(inp), (wh, ww), padding=(ph, pw), stride=(sh, sw), dilation=(dh, dw) ) np.testing.assert_equal(gt_out, out.numpy()) def test_sliding_window_transpose(): N, C, H, W = 2, 3, 7, 8 ph, pw = 1, 2 sh, sw = 2, 1 wh, ww = 3, 2 dh, dw = 1, 3 s = lambda i, p, s, d, w: (i + p * 2 - (w - 1) * d - 1) // s + 1 inp = np.random.normal( size=(N, C, s(H, ph, sh, dh, wh), s(W, pw, sw, dw, ww), wh, ww) ).astype(np.float32) gt_out = np.zeros((N, C, H, W), dtype=np.float32) for n, c in itertools.product(*map(range, inp.shape[:2])): oh = 0 for ih in range(-ph, H + ph - dh * (wh - 1), sh): ow = 0 for iw in range(-pw, W + pw - dw * (ww - 1), sw): for kh, kw in itertools.product(*map(range, inp.shape[-2:])): ih2 = ih + dh * kh iw2 = iw + dw * kw if ih2 >= 0 and ih2 < H and iw2 >= 0 and iw2 < W: gt_out[n, c, ih2, iw2] += inp[n, c, oh, ow, kh, kw] ow += 1 oh += 1 out = F.sliding_window_transpose( tensor(inp), (H, W), (wh, ww), padding=(ph, pw), stride=(sh, sw), dilation=(dh, dw), ) np.testing.assert_equal(gt_out, out.numpy()) def test_pad(): src = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.float32) dst = np.pad(src, ((2, 2), (2, 2)), "constant") res = F.nn.pad(tensor(src), ((2, 2), (2, 2)), "CONSTANT") np.testing.assert_allclose(res, dst, atol=1e-5) dst = np.pad(src, ((2, 2), (2, 2)), "constant", constant_values=3) res = F.nn.pad(tensor(src), ((2, 2), (2, 2)), "CONSTANT", constant_value=3) np.testing.assert_allclose(res, dst, atol=1e-5) dst = np.pad(src, ((2, 2), (2, 2)), "edge") res = F.nn.pad(tensor(src), ((2, 2), (2, 2)), "EDGE") np.testing.assert_allclose(res, dst, atol=1e-5) dst = np.pad(src, ((2, 2), (2, 2)), "reflect") res = F.nn.pad(tensor(src), ((2, 2), (2, 2)), "REFLECT") np.testing.assert_allclose(res, dst, atol=1e-5) def pixel_shuffle(data, r): high_dim = data.shape[:-3] data = data.reshape(-1, data.shape[-3], data.shape[-2], data.shape[-1]) inn, ic, ih, iw = data.shape res = np.zeros((inn, int(ic / (r * r)), ih * r, iw * r)) for n in range(inn): for c in range(ic): for h in range(ih): for w in range(iw): res[ n, int(c / r / r), h * r + int((c % (r * r)) / r), w * r + c % r, ] = data[n, c, h, w] if len(high_dim) > 0: res = res.reshape((*high_dim, int(ic / r / r), ih * r, iw * r)) else: res = res[0] return res def test_pixel_shuffle(): # ndim = 3 inp = np.arange(16 * 3 * 3).reshape(16, 3, 3) out = F.pixel_shuffle(tensor(inp), upscale_factor=4) golden = pixel_shuffle(inp, 4) np.testing.assert_equal(out.numpy(), golden) inp_float = np.float32(inp) out = F.pixel_shuffle(tensor(inp_float), upscale_factor=2) golden = pixel_shuffle(inp_float, 2) np.testing.assert_equal(out.numpy(), golden) # ndim = 4 inp = np.arange(3 * 18 * 3 * 3).reshape(3, 18, 3, 3) out = F.pixel_shuffle(tensor(inp), upscale_factor=3) golden = pixel_shuffle(inp, 3) np.testing.assert_equal(out.numpy(), golden) inp_float = np.float32(inp) out = F.pixel_shuffle(tensor(inp_float), upscale_factor=3) golden = pixel_shuffle(inp_float, 3) np.testing.assert_equal(out.numpy(), golden) # ndim = 5 inp = np.arange(5 * 3 * 20 * 3 * 4).reshape(5, 3, 20, 3, 4) out = F.pixel_shuffle(tensor(inp), upscale_factor=2) golden = pixel_shuffle(inp, 2) np.testing.assert_equal(out.numpy(), golden) inp_float = np.float32(inp) out = F.pixel_shuffle(tensor(inp_float), upscale_factor=2) golden = pixel_shuffle(inp_float, 2) np.testing.assert_equal(out.numpy(), golden) # ndim = 6 inp = np.arange(6 * 5 * 3 * 25 * 3 * 4).reshape(6, 5, 3, 25, 3, 4) out = F.pixel_shuffle(tensor(inp), upscale_factor=5) golden = pixel_shuffle(inp, 5) np.testing.assert_equal(out.numpy(), golden) inp_float = np.float32(inp) out = F.pixel_shuffle(tensor(inp_float), upscale_factor=5) golden = pixel_shuffle(inp_float, 5) np.testing.assert_equal(out.numpy(), golden) # ndim = 7 inp = np.arange(2 * 3 * 5 * 3 * 20 * 3 * 4).reshape(2, 3, 5, 3, 20, 3, 4) out = F.pixel_shuffle(tensor(inp), upscale_factor=2) golden = pixel_shuffle(inp, 2) np.testing.assert_equal(out.numpy(), golden) inp_float = np.float32(inp) out = F.pixel_shuffle(tensor(inp_float), upscale_factor=2) golden = pixel_shuffle(inp_float, 2) np.testing.assert_equal(out.numpy(), golden) @pytest.mark.parametrize("type", ["int32", "float32"]) @pytest.mark.parametrize("is_symbolic", [False, True]) def test_pixel_shuffle_symbolic(is_symbolic, type): def fn(inp, upscale_factor): return F.pixel_shuffle(inp, upscale_factor=upscale_factor) if is_symbolic is not None: fn = jit.trace(symbolic=is_symbolic)(fn) inp = tensor(np.arange(3 * 4 * 5 * 5).reshape(3, 4, 5, 5).astype(type)) golden = pixel_shuffle(inp, 2) for _ in range(3): out = fn(inp, 2) np.testing.assert_equal(out.numpy(), golden) if is_symbolic is None: break def test_set_conv2d_config(): """check setting config by contextmanager is equal to manually converted result""" config._compute_mode = "float32" inp = tensor(np.random.randn(1, 3, 224, 224), dtype=np.float16) weight = tensor(np.random.randn(64, 3, 7, 7), dtype=np.float16) config_out = F.conv2d(inp, weight, None, (2, 2), (3, 3), (1, 1), 1) config._compute_mode = "default" with config._override(compute_mode="float32"): context_out = F.conv2d(inp, weight, None, (2, 2), (3, 3), (1, 1), 1) expected = F.conv2d( inp, weight, None, (2, 2), (3, 3), (1, 1), 1, compute_mode="float32", ) np.testing.assert_allclose(config_out.numpy(), expected.numpy()) np.testing.assert_allclose(context_out.numpy(), expected.numpy()) @pytest.mark.parametrize("stride", [(1, 1)]) @pytest.mark.parametrize("padding", [(1, 1)]) @pytest.mark.parametrize("dilation", [(1, 1)]) @pytest.mark.parametrize("ksize", [(3, 3)]) @pytest.mark.parametrize("groups", [1, 2]) def test_local_conv2d(stride, padding, dilation, ksize, groups): batch_size, in_channels, out_channels = 2, 4, 8 input_height, input_width = 10, 10 output_height = (input_height + padding[0] * 2 - ksize[0]) // stride[0] + 1 output_width = (input_width + padding[1] * 2 - ksize[1]) // stride[1] + 1 def local_conv2d_np(data, weight, stride, padding, dialtion): # naive calculation use numpy # only test output_height == input_height, output_width == input_width data = np.pad(data, ((0, 0), (0, 0), (1, 1), (1, 1))) expected = np.zeros( (batch_size, out_channels, output_height, output_width), dtype=np.float32, ) ic_group_size = in_channels // groups oc_group_size = out_channels // groups for n, oc, oh, ow in itertools.product( *map(range, [batch_size, out_channels, output_height, output_width]) ): ih, iw = oh * stride[0], ow * stride[1] g_id = oc // oc_group_size expected[n, oc, ih, iw] = np.sum( data[ n, g_id * ic_group_size : (g_id + 1) * ic_group_size, ih : ih + ksize[0], iw : iw + ksize[1], ] * weight[g_id, oh, ow, :, :, :, oc % oc_group_size] ) return expected data = np.random.rand(batch_size, in_channels, input_height, input_width).astype( "float32" ) weight = np.random.rand( groups, output_height, output_width, in_channels // groups, *ksize, out_channels // groups, ).astype("float32") output = F.local_conv2d( tensor(data), tensor(weight), None, stride=stride, padding=padding, dilation=dilation, ) ref = local_conv2d_np(data, weight, stride, padding, dilation) np.testing.assert_almost_equal(output.numpy(), ref, 5) def test_conv_transpose2d(): m = ConvTranspose2d( 16, 33, (3, 5), output_padding=(1, 2), stride=(2, 3), padding=(4, 2) ) @trace(symbolic=True) def fwd(inp: Tensor): return m(inp) input = Tensor(np.random.rand(20, 16, 50, 100)) output = fwd(input) output_shape = Tensor(output.shape) np.testing.assert_equal( output_shape.numpy(), np.array([20, 33, 94, 300], dtype=np.int32) ) def test_conv_transpose3d(): m = ConvTranspose3d( 16, 33, (3, 5, 2), output_padding=(2, 1, 1), stride=(3, 2, 2), padding=(0, 4, 2) ) @trace(symbolic=True) def fwd(inp: Tensor): return m(inp) input = Tensor(np.random.rand(20, 16, 10, 50, 100)) output = fwd(input) output_shape = Tensor(output.shape) np.testing.assert_equal( output_shape.numpy(), np.array([20, 33, 32, 96, 197], dtype=np.int32) )