#include "megbrain/gopt/inference.h" #include "megbrain/opr/basic_arith.h" #include "megbrain/opr/dnn/adaptive_pooling.h" #include "megbrain/opr/dnn/convolution.h" #include "megbrain/opr/dnn/pooling.h" #include "megbrain/opr/imgproc.h" #include "megbrain/opr/misc.h" #include "megbrain/opr/nn_int.h" #include "megbrain/opr/tensor_manip.h" #include "megbrain/opr/utility.h" #include "megbrain/serialization/opr_shallow_copy.h" #include "megdnn/opr_param_defs.h" #include "megdnn/tensor_format.h" #include "megbrain/opr/internal/megdnn_opr_wrapper.h" #include "megbrain/gopt/misc.h" #include "megbrain/utils/hash_ct.h" #include "midout.h" #include "megbrain/gopt/reformat_manager.h" MIDOUT_DECL(megbrain_padding_channel) #define MIDOUT_B(tag) \ MIDOUT_BEGIN(megbrain_padding_channel, midout_iv(MGB_HASH_STR(tag))) { #define MIDOUT_E \ } \ MIDOUT_END(); using namespace mgb; using namespace gopt; using ReformatKey = ReformatManager::ReformatKey; /* ==================== PaddingChannelPass ================= */ namespace { size_t padding_int4(size_t in_channel, bool) { if (in_channel <= 32) { return (8 - (in_channel % 8)) % 8; } else { return (64 - (in_channel % 64)) % 64; } } //! flag is used by user to identify some case, such as in nchw64, flag is used //! to identify the convbias and convolution backward size_t padding_int8(size_t in_channel, bool flag) { if (flag) { if (in_channel <= 16) { return (4 - (in_channel % 4)) % 4; } else { return (32 - (in_channel % 32)) % 32; } } else { return (4 - (in_channel % 4)) % 4; } } size_t padding_4(size_t in_channel, bool) { return (4 - (in_channel % 4)) % 4; }; size_t padding_8(size_t in_channel, bool) { return (8 - (in_channel % 8)) % 8; }; } // namespace std::unique_ptr PaddingChannelPass::make( cg::GraphCommonOptimizeOptions::LayoutTransform layout_transform, bool only_padding_weights) { MIDOUT_B("PaddingChannelPass::make") using LayoutTrans = cg::GraphCommonOptimizeOptions::LayoutTransform; auto ret = std::unique_ptr( new PaddingChannelPass(only_padding_weights)); auto& alignment_map = ret->m_alignment_map; if (layout_transform == LayoutTrans::NCHW64) { alignment_map[DTypeEnum::QuantizedS4] = padding_int4; alignment_map[DTypeEnum::Quantized4Asymm] = padding_int4; alignment_map[DTypeEnum::QuantizedS8] = padding_int8; } else if ( layout_transform == LayoutTrans::NHWCD4 || layout_transform == LayoutTrans::NCHW44 || layout_transform == LayoutTrans::NCHW44_DOT) { alignment_map[DTypeEnum::QuantizedS8] = padding_4; alignment_map[DTypeEnum::Quantized8Asymm] = padding_4; alignment_map[DTypeEnum::Float32] = padding_4; #if !MEGDNN_DISABLE_FLOAT16 alignment_map[DTypeEnum::Float16] = padding_4; #endif } else if (layout_transform == LayoutTrans::NCHW88) { alignment_map[DTypeEnum::QuantizedS8] = padding_8; alignment_map[DTypeEnum::Quantized8Asymm] = padding_8; alignment_map[DTypeEnum::Float32] = padding_8; #if !MEGDNN_DISABLE_FLOAT16 alignment_map[DTypeEnum::Float16] = padding_8; #endif } ret->fill_opr_convert_fun(layout_transform); return ret; MIDOUT_E } const char* PaddingChannelPass::name() const { return mgb_cstr_log("padding output channel to multiple of 4/32"); } void PaddingChannelPass::apply(OptState& opt) const { MIDOUT_B("PaddingChannelPass::apply"); // do not check shape opt.set_var_replace_check_flag( VarReplaceCheckFlag::CHECK_ALL ^ VarReplaceCheckFlag::CHECK_SHAPE); m_padding_oprs.clear(); auto rewriter = opt.graph().make_rewriter(); auto on_opr = [this, &opt, &rewriter](OperatorNodeBase* opr) { auto it = m_opr_replace_funcs.find(opr->dyn_typeinfo()); auto is_skip = false; //! if the input of the opr is dynamic shape, skip it for (size_t id = 0; id < opr->input().size(); id++) { if (0 == opr->input(id)->shape().ndim) { is_skip = true; } } if (it != m_opr_replace_funcs.end() && !is_skip) { VarNodeArray new_inp; new_inp.reserve(opr->input().size()); for (auto&& inp : opr->input()) { new_inp.push_back(rewriter.get_var(inp)); } auto new_opr = (it->second)(opr, new_inp); auto &&out0 = opr->output(), &&out1 = new_opr->output(); mgb_assert( out0.size() == out1.size(), "bad opr replace: src=%s{%s} dst=%s{%s}, " "src.size=%zu " "dst.size=%zu", opr->cname(), opr->dyn_typeinfo()->name, new_opr->cname(), new_opr->dyn_typeinfo()->name, out0.size(), out1.size()); for (size_t i = 0; i < out0.size(); ++i) { if (!out0[i]->contain_flag(VarNode::Flag::VOLATILE_CONTENT)) { mgb_assert(!out1[i]->contain_flag(VarNode::Flag::VOLATILE_CONTENT)); auto src = out0[i]; auto dst = out1[i]; if (opt.graph().endpoint_contain(src) && !src->shape().eq_shape(dst->shape())) { dst = extract_subtensor(dst, src->shape()); } rewriter.replace_var(src, dst, nullptr); } } } else { rewriter.auto_replace_outputs(opr); } }; opt.graph().iter(on_opr); rewriter.apply_inplace(); MIDOUT_E } VarNode* PaddingChannelPass::extract_subtensor( VarNode* inp, const TensorShape& orig_shape) const { mgb_assert(inp->shape().ndim == 4); mgb_assert(inp->shape()[0] == orig_shape[0]); mgb_assert(inp->shape()[2] == orig_shape[2]); mgb_assert(inp->shape()[3] == orig_shape[3]); size_t orig_channels = orig_shape[1]; //! if channel is not padding, do nothing if (orig_channels == inp->shape()[1]) { return inp; } auto x = SymbolVar(inp); auto cv = [&x](int v) { return x.make_scalar(v); }; using AIdx = opr::Subtensor::AxisIndexer; auto sub = opr::Subtensor::make( x, {AIdx::make_interval(0, None, None, cv(1)), AIdx::make_interval(1, None, cv(orig_channels), None), AIdx::make_interval(2, None, None, cv(1)), AIdx::make_interval(3, None, None, cv(1))}); return sub.node(); }; VarNode* PaddingChannelPass::pad_in_channels(VarNode* inp, size_t pad_channels) { TensorShape shape; size_t axis = 0; if (inp->shape().ndim == 4) { shape = TensorShape{ inp->shape()[0], pad_channels, inp->shape()[2], inp->shape()[3]}; axis = 1; } else { mgb_assert(inp->shape().ndim == 5); //! the channel wise convolution if (inp->shape()[1] == 1 && inp->shape()[2] == 1) { shape = TensorShape{ pad_channels, inp->shape()[1], inp->shape()[2], inp->shape()[3], inp->shape()[4]}; axis = 0; } else { //! the group convolution mgb_assert(0, "group convolution can't padding cahnnel\n"); } } std::shared_ptr host_val = std::make_shared(inp->comp_node(), inp->dtype()); host_val->resize(shape); auto ptr = host_val->raw_ptr(); size_t size_bytes = TensorLayout{shape, inp->dtype()}.span().dist_byte(); std::memset(ptr, 0, size_bytes); auto padding = opr::ImmutableTensor::make(*inp->owner_graph(), *host_val); auto out = opr::Concat::make({inp, padding}, axis); return out.node(); }; VarNode* PaddingChannelPass::pad_out_channels(VarNode* inp, size_t pad_channels) { TensorShape shape; size_t axis = 0; if (inp->shape().ndim == 4) { shape = TensorShape{ pad_channels, inp->shape()[1], inp->shape()[2], inp->shape()[3]}; axis = 0; } else { mgb_assert(inp->shape().ndim == 5); //! the channel wise convolution if (inp->shape()[1] == 1 && inp->shape()[2] == 1) { shape = TensorShape{ pad_channels, inp->shape()[1], inp->shape()[2], inp->shape()[3], inp->shape()[4]}; axis = 0; } else { //! the group convolution mgb_assert(0, "group convolution can't padding cahnnel\n"); } } std::shared_ptr host_val = std::make_shared(inp->comp_node(), inp->dtype()); host_val->resize(shape); auto ptr = host_val->raw_ptr(); size_t size_bytes = TensorLayout{shape, inp->dtype()}.span().dist_byte(); std::memset(ptr, 0, size_bytes); auto padding = opr::ImmutableTensor::make(*inp->owner_graph(), *host_val); auto out = opr::Concat::make({inp, padding}, axis); return out.node(); }; // padding policy for dense convolution OperatorNodeBase* PaddingChannelPass::padding_conv_policy( OperatorNodeBase* opr, const VarNodeArray& new_inp) { mgb_assert(opr->input().size() == new_inp.size()); mgb_assert(new_inp.size() >= 2); //! new weights and old weights are same shape mgb_assert(opr->input(1)->shape().eq_shape(new_inp[1]->shape())); auto inps = new_inp; size_t out_channels = opr->input(1)->shape()[0]; size_t in_channels = opr->input(1)->shape()[1]; size_t new_in_channels = new_inp[0]->shape()[1]; auto it = m_alignment_map.find(opr->input(0)->dtype().enumv()); if (it != m_alignment_map.end()) { mgb_assert(it->second); } else { return serialization::copy_opr_shallow(*opr, inps, opr->config()); } // pad input channels if (m_padding_oprs.count(opr->input(0)->owner_opr())) { //! as the opr of input var is padding, but the dtype of input and output of //! the input opr maybe different, so the alignment is not the same size_t pad_channels_0 = m_only_padding_weights ? 0 : it->second(new_in_channels, true); size_t pad_channels_1 = it->second(in_channels, true); if (pad_channels_0) { inps[0] = pad_in_channels(new_inp[0], pad_channels_0); } else { pad_channels_1 = new_in_channels - in_channels; } if (pad_channels_1) { inps[1] = pad_in_channels(new_inp[1], pad_channels_1); } } else { mgb_assert(new_in_channels == in_channels); size_t pad_channels = it->second(in_channels, true); if (pad_channels > 0 && !m_only_padding_weights) { inps[0] = pad_in_channels(new_inp[0], pad_channels); inps[1] = pad_in_channels(new_inp[1], pad_channels); } } out_channels = inps[1]->shape()[0]; size_t pad_channels = it->second(out_channels, true); if (pad_channels > 0) { inps[1] = pad_out_channels(inps[1], pad_channels); if (inps.size() >= 3) { inps[2] = pad_in_channels(inps[2], pad_channels); } m_padding_oprs.insert(opr); } return serialization::copy_opr_shallow(*opr, inps, opr->config()); }; //! padding policy for channel wise convolution OperatorNodeBase* PaddingChannelPass::padding_channel_wise_conv_policy( OperatorNodeBase* opr, const VarNodeArray& new_inp) { mgb_assert(opr->input().size() == new_inp.size()); mgb_assert(opr->input()[1]->shape().ndim == 5); mgb_assert(new_inp.size() >= 2); //! new weights and old weights are same shape mgb_assert(opr->input(1)->shape().eq_shape(new_inp[1]->shape())); auto inps = new_inp; size_t group = opr->input(1)->shape()[0]; size_t new_in_channels = new_inp[0]->shape()[1]; auto it = m_alignment_map.find(opr->input(0)->dtype().enumv()); if (it != m_alignment_map.end()) { mgb_assert(it->second); } else { return serialization::copy_opr_shallow(*opr, inps, opr->config()); } // pad input channels if (m_padding_oprs.count(opr->input(0)->owner_opr())) { size_t pad_channels_1 = new_in_channels - group; if (pad_channels_1) { inps[1] = pad_in_channels(new_inp[1], pad_channels_1); if (inps.size() >= 3) { inps[2] = pad_in_channels(new_inp[2], pad_channels_1); } m_padding_oprs.insert(opr); } } return serialization::copy_opr_shallow(*opr, inps, opr->config()); }; void PaddingChannelPass::fill_opr_convert_fun(LayoutTrans layout_trans) { add_conv_replace_func(layout_trans); add_conv_backward_data_replace_func(layout_trans); add_format_aware_opr_replace_func(layout_trans); add_elemwise_like_opr_replace_func(layout_trans); add_condition_padding_oprs_replace_func(layout_trans); add_nonpadding_oprs_replace_func(layout_trans); } void PaddingChannelPass::add_conv_replace_func(LayoutTrans layout_trans) { if (layout_trans == LayoutTrans::NCHW64) { m_opr_replace_funcs[opr::ConvBiasForward::typeinfo()] = [this](OperatorNodeBase* opr, const VarNodeArray& new_inp) { mgb_assert( opr->input()[1]->shape().ndim == 4, "nchw64 format only support padding channel in dense " "convolution\n"); if (opr->input(0)->dtype().enumv() == DTypeEnum::QuantizedS8 || opr->input(0)->dtype().enumv() == DTypeEnum::QuantizedS4 || opr->input(0)->dtype().enumv() == DTypeEnum::Quantized4Asymm) { return padding_conv_policy(opr, new_inp); } else { mgb_assert( m_padding_oprs.count(opr->input(0)->owner_opr()) == 0, "conv bias operator for data type(%s) cannot be " "padded channel. " "consumer(%s), producer(%s)", opr->input(0)->dtype().name(), opr->cname(), opr->input(0)->owner_opr()->cname()); return serialization::copy_opr_shallow( *opr, new_inp, opr->config()); } }; } else if ( layout_trans == LayoutTrans::NCHW44 || layout_trans == LayoutTrans::NCHW44_DOT || layout_trans == LayoutTrans::NCHW88) { auto padding_conv = [this](OperatorNodeBase* opr, const VarNodeArray& new_inp) { if (opr->input()[1]->shape().ndim == 4) { return padding_conv_policy(opr, new_inp); } else { mgb_assert(opr->input()[1]->shape().ndim == 5); if (opr->input()[1]->shape()[1] == 1 && opr->input()[1]->shape()[2] == 1) { return padding_channel_wise_conv_policy(opr, new_inp); } else { //! group convolution can't padding channel mgb_assert(opr->input().size() == new_inp.size()); auto inps = new_inp; for (size_t i = 0; i < new_inp.size(); ++i) { auto cur_inp = opr->input(i); bool padding_cur_inp = m_padding_oprs.count(cur_inp->owner_opr()) > 0; if (padding_cur_inp) { inps[i] = extract_subtensor(inps[i], cur_inp->shape()); } } return serialization::copy_opr_shallow(*opr, inps, opr->config()); } } }; m_opr_replace_funcs[opr::ConvBiasForward::typeinfo()] = padding_conv; m_opr_replace_funcs[opr::Convolution::typeinfo()] = padding_conv; } } void PaddingChannelPass::add_conv_backward_data_replace_func(LayoutTrans layout_trans) { if (layout_trans == LayoutTrans::NCHW64) { m_opr_replace_funcs[opr::ConvolutionBackwardData::typeinfo()] = [this](OperatorNodeBase* opr, const VarNodeArray& new_inp) { if (opr->input(1)->dtype().enumv() != DTypeEnum::QuantizedS8) { mgb_assert( m_padding_oprs.count(opr->input(0)->owner_opr()) == 0, "conv bwd data operator for data type(%s) cannot " "be " "padded channel. " "consumer(%s), producer(%s)", opr->input(0)->dtype().name(), opr->cname(), opr->input(0)->owner_opr()->cname()); return serialization::copy_opr_shallow( *opr, new_inp, opr->config()); } mgb_assert(opr->input().size() == new_inp.size()); mgb_assert( new_inp.size() == 2, "deconv (conv bwd data) operator for inference can " "only have 2 input vars(got:%zu)", new_inp.size()); mgb_assert(opr->input(0)->shape().eq_shape(new_inp[0]->shape())); auto inps = new_inp; size_t out_channels = opr->input(0)->shape()[0]; size_t in_channels = opr->input(0)->shape()[1]; size_t new_out_channels = new_inp[1]->shape()[1]; auto it = m_alignment_map.find(opr->input(1)->dtype().enumv()); // pad output channels if (m_padding_oprs.count(opr->input(1)->owner_opr())) { size_t pad_channels = new_out_channels - out_channels; inps[0] = pad_out_channels(new_inp[0], pad_channels); } else { size_t pad_channels = m_only_padding_weights ? 0 : it->second(out_channels, false); if (pad_channels > 0) { inps[0] = pad_out_channels(new_inp[0], pad_channels); inps[1] = pad_in_channels(new_inp[1], pad_channels); } } out_channels = inps[0]->shape()[0]; // pad input channels size_t pad_channels = it->second(in_channels, false); if (pad_channels > 0) { inps[0] = pad_in_channels(inps[0], pad_channels); m_padding_oprs.insert(opr); } return serialization::copy_opr_shallow(*opr, inps, opr->config()); }; } else { m_opr_replace_funcs[opr::ConvolutionBackwardData::typeinfo()] = [this](OperatorNodeBase* opr, const VarNodeArray& new_inp) { mgb_assert(opr->input(0)->shape().eq_shape(new_inp[0]->shape())); auto inps = new_inp; size_t out_channels = opr->input(0)->shape()[0]; size_t new_out_channels = new_inp[1]->shape()[1]; // pad output channels if (m_padding_oprs.count(opr->input(1)->owner_opr())) { size_t pad_channels = new_out_channels - out_channels; inps[0] = pad_out_channels(new_inp[0], pad_channels); } out_channels = inps[0]->shape()[0]; return serialization::copy_opr_shallow(*opr, inps, opr->config()); }; } } void PaddingChannelPass::add_format_aware_opr_replace_func(LayoutTrans layout_trans) { auto replace_format_aware_opr = [this, layout_trans]( OperatorNodeBase* opr, const VarNodeArray& new_inp) { if (layout_trans == LayoutTrans::NCHW64) { if (opr->input(0)->dtype().enumv() != DTypeEnum::QuantizedS8 && opr->input(0)->dtype().enumv() != DTypeEnum::QuantizedS4 && opr->input(0)->dtype().enumv() != DTypeEnum::Quantized4Asymm) { mgb_assert( m_padding_oprs.count(opr->input(0)->owner_opr()) == 0, "operator(type:%s,name:%s) for data type(%s) cannot be " "padded channel. extra info:" "consumer(%s), producer(%s)", opr->dyn_typeinfo()->name, opr->cname(), opr->input(0)->dtype().name(), opr->cname(), opr->input(0)->owner_opr()->cname()); return serialization::copy_opr_shallow(*opr, new_inp, opr->config()); } } mgb_assert(opr->input().size() == new_inp.size()); if (m_padding_oprs.count(opr->input(0)->owner_opr())) { m_padding_oprs.insert(opr); } return serialization::copy_opr_shallow(*opr, new_inp, opr->config()); }; m_opr_replace_funcs[opr::PoolingForward::typeinfo()] = replace_format_aware_opr; m_opr_replace_funcs[opr::WarpPerspectiveForward::typeinfo()] = replace_format_aware_opr; m_opr_replace_funcs[opr::WarpAffine::typeinfo()] = replace_format_aware_opr; m_opr_replace_funcs[opr::AdaptivePooling::typeinfo()] = replace_format_aware_opr; m_opr_replace_funcs[opr::ResizeForward::typeinfo()] = replace_format_aware_opr; } void PaddingChannelPass::add_elemwise_like_opr_replace_func(LayoutTrans) { auto replace_elemwise_like_opr = [this](OperatorNodeBase* opr, const VarNodeArray& new_inp) { mgb_assert(opr->input().size() == new_inp.size()); bool have_padding_inp = false; bool padding_all_inps = true; bool same_padding = true; size_t channels_after_padding = 0; size_t i = 0; for (auto&& cur_inp : opr->input()) { if (cur_inp->shape().is_scalar()) { ++i; continue; } bool padding_cur_inp = m_padding_oprs.count(cur_inp->owner_opr()) > 0; if (padding_cur_inp) { if (!have_padding_inp) have_padding_inp = true; if (channels_after_padding == 0) { channels_after_padding = new_inp[i]->shape()[1]; } else { same_padding = channels_after_padding == new_inp[i]->shape()[1]; } } if (padding_all_inps && (!padding_cur_inp || !same_padding)) { padding_all_inps = false; } ++i; } if (have_padding_inp && !padding_all_inps) { auto inps = new_inp; for (size_t i = 0; i < new_inp.size(); ++i) { auto cur_inp = opr->input(i); bool padding_cur_inp = m_padding_oprs.count(cur_inp->owner_opr()) > 0; if (padding_cur_inp) { inps[i] = extract_subtensor(inps[i], cur_inp->shape()); } } return serialization::copy_opr_shallow(*opr, inps, opr->config()); } if (padding_all_inps && have_padding_inp) { m_padding_oprs.insert(opr); } return serialization::copy_opr_shallow(*opr, new_inp, opr->config()); }; m_opr_replace_funcs[opr::ElemwiseMultiType::typeinfo()] = replace_elemwise_like_opr; m_opr_replace_funcs[opr::Elemwise::typeinfo()] = replace_elemwise_like_opr; m_opr_replace_funcs[opr::TypeCvt::typeinfo()] = replace_elemwise_like_opr; m_opr_replace_funcs[opr::PowC::typeinfo()] = replace_elemwise_like_opr; } void PaddingChannelPass::add_condition_padding_oprs_replace_func(LayoutTrans) { auto replace_condition_oprs = [this](OperatorNodeBase* opr, const VarNodeArray& new_inp) { mgb_assert(opr->input().size() == new_inp.size()); bool can_forward_padding = true; if (auto reduce = opr->try_cast_final()) { auto axis = reduce->param().axis; if (axis < 0) { axis += reduce->input(0)->layout().ndim; } //! don't reduce in channel if (reduce->input().size() > 1) { can_forward_padding = false; } else { can_forward_padding = reduce->param().axis != 1; } } else if (auto subtensor = opr->try_cast_final()) { auto indexs = subtensor->index_desc(); size_t input_dim = subtensor->input(0)->shape().ndim; for (size_t id = 0; id < indexs.size(); id++) { if (indexs[id].axis.get(input_dim) == 1) { //! when subtensor perform on channel dim, if is idx mode or //! end is valid, it can forward without add subtensor can_forward_padding &= indexs[id].idx.node() || indexs[id].end.node(); } } } auto inps = new_inp; for (size_t i = 0; i < new_inp.size(); ++i) { auto cur_inp = opr->input(i); bool padding_cur_inp = m_padding_oprs.count(cur_inp->owner_opr()) > 0; if (padding_cur_inp) { if (can_forward_padding) { m_padding_oprs.insert(opr); } else { inps[i] = extract_subtensor(inps[i], cur_inp->shape()); } } } return serialization::copy_opr_shallow(*opr, inps, opr->config()); }; m_opr_replace_funcs[opr::Reduce::typeinfo()] = replace_condition_oprs; m_opr_replace_funcs[opr::Subtensor::typeinfo()] = replace_condition_oprs; } void PaddingChannelPass::add_nonpadding_oprs_replace_func(LayoutTrans) { auto replace_nonpadding_oprs = [this](OperatorNodeBase* opr, const VarNodeArray& new_inp) { mgb_assert(opr->input().size() == new_inp.size()); auto inps = new_inp; for (size_t i = 0; i < new_inp.size(); ++i) { auto cur_inp = opr->input(i); bool padding_cur_inp = m_padding_oprs.count(cur_inp->owner_opr()) > 0; if (padding_cur_inp) { inps[i] = extract_subtensor(inps[i], cur_inp->shape()); } } return serialization::copy_opr_shallow(*opr, inps, opr->config()); }; m_opr_replace_funcs[opr::Reshape::typeinfo()] = replace_nonpadding_oprs; m_opr_replace_funcs[opr::GetVarShape::typeinfo()] = replace_nonpadding_oprs; m_opr_replace_funcs[opr::Concat::typeinfo()] = replace_nonpadding_oprs; m_opr_replace_funcs[opr::Dimshuffle::typeinfo()] = replace_nonpadding_oprs; m_opr_replace_funcs[opr::Argmax::typeinfo()] = replace_nonpadding_oprs; m_opr_replace_funcs[opr::Argmin::typeinfo()] = replace_nonpadding_oprs; m_opr_replace_funcs[opr::IncrSubtensor::typeinfo()] = replace_nonpadding_oprs; m_opr_replace_funcs[opr::AssertEqual::typeinfo()] = replace_nonpadding_oprs; } // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}