/** * \file dnn/src/rocm/batched_matrix_mul/algos.h * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or * implied. */ #pragma once #include "megdnn/oprs.h" #include "src/common/algo_base.h" #include "src/common/metahelper.h" #include "src/common/utils.h" #include "src/rocm/batched_matrix_mul/opr_impl.h" #include #include namespace megdnn { namespace rocm { /*! * \brief base class for matrix mul algos * */ class BatchedMatrixMulForwardImpl::AlgoBase : public Algorithm { protected: ~AlgoBase() = default; public: enum class AlgoType : uint32_t { ROCM_BLAS, }; using Mapper = std::unordered_map; AlgoBase() : Algorithm() { m_handle_type = Handle::HandleType::ROCM; } struct SizeArgs { BatchedMatrixMulForwardImpl* opr; TensorLayout layout_a, layout_b, layout_c; std::string to_string() const; SizeArgs(BatchedMatrixMulForwardImpl* opr, const TensorLayout& A, const TensorLayout& B, const TensorLayout& C); bool can_be_treated_as_int8x8x32() const { return layout_a.dtype.enumv() == layout_b.dtype.enumv() && (layout_a.dtype.enumv() == DTypeEnum::Int8 || layout_a.dtype.enumv() == DTypeEnum::QuantizedS8) && (layout_c.dtype.enumv() == DTypeEnum::Int32 || layout_c.dtype.enumv() == DTypeEnum::QuantizedS32) && opr->param().format == param::MatrixMul::Format::DEFAULT; } }; struct ExecArgs : public SizeArgs { TensorND tensor_a, tensor_b, tensor_c; Workspace workspace; ExecArgs(BatchedMatrixMulForwardImpl* opr, _megdnn_tensor_in A, _megdnn_tensor_in B, _megdnn_tensor_out C, _megdnn_workspace workspace); }; virtual bool is_available(const SizeArgs& args) const = 0; virtual size_t get_workspace_in_bytes(const SizeArgs& args) const = 0; virtual void exec(const ExecArgs& args) const = 0; bool is_available_wk(const SizeArgs& args, size_t limit) const { return is_available(args) && get_workspace_in_bytes(args) <= limit; } bool is_available_attribute( const SizeArgs& args, const AlgoAttribute& attr = AlgoAttribute::REPRODUCIBLE, size_t limit = std::numeric_limits::max()) const { return contain_attribute(attr) && is_available_wk(args, limit); } AlgoBase& check_workspace(const SizeArgs& args, const Workspace& workspace) { auto req = get_workspace_in_bytes(args); megdnn_assert( req <= workspace.size, "matrix mul fwd algo %s: required workspace %zu bytes, got %zu", name(), req, workspace.size); return *this; } }; class BatchedMatrixMulForwardImpl::AlgoBlas final : public AlgoBase { public: AlgoBlas() = default; bool is_available(const SizeArgs& args) const override; size_t get_workspace_in_bytes(const SizeArgs& /* args */) const override { return 0_z; } const char* name() const override { return "BLAS"; } void exec(const ExecArgs& args) const override; AlgoAttribute attribute() const override { return AlgoAttribute::REPRODUCIBLE; } MEGDNN_DECL_ALGO_TYPE(ROCM_BLAS) }; class BatchedMatrixMulForwardImpl::AlgoPack : NonCopyableObj { private: AlgoBase::Mapper m_all_algos_map; public: AlgoPack(); AlgoBlas blas; std::vector all_algos; const AlgoBase::Mapper& all_algos_map() const { return m_all_algos_map; } }; } // namespace rocm } // namespace megdnn // vim: syntax=cpp.doxygen