/** * \file dnn/src/naive/batch_conv_bias/opr_impl.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ #include "src/naive/batch_conv_bias/opr_impl.h" #include "megdnn/oprs/nn.h" #include "src/common/conv_bias.h" #include "src/naive/conv_bias/opr_impl.h" #include "src/naive/convolution/helper.h" #include #include "src/common/utils.h" #include "src/naive/handle.h" using namespace megdnn; using namespace naive; using namespace convolution; namespace { struct BatchConvFilterVisitor { template static ftype* get_current_ptr(ftype* fptr, size_t batch, size_t /* oc */, size_t /* oh */, size_t /* ow */, size_t filter_sizes) { return fptr + batch * filter_sizes; } }; } // namespace WorkspaceBundle BatchConvBiasForwardImpl::get_workspace_bundle( dt_byte* raw_ptr, const TensorLayout& /* src */, const TensorLayout& /* flt */, const TensorLayout& bias, const TensorLayout& z, const TensorLayout& dst) { size_t ws_bias_size = 0, ws_z_size = 0; if (bias.dtype.enumv() != dst.dtype.enumv()) { ws_z_size = TensorLayout{dst, bias.dtype}.span().dist_byte(); } if (z.ndim > 0) { megdnn_assert(z.dtype.enumv() == DTypeEnum::QuantizedS8); megdnn_assert(z.eq_shape(dst)); // (w * f + b).astype(float) + (z).astype(float) size_t f32_z_size = TensorLayout{z, dtype::Float32()}.span().dist_byte(); ws_z_size = f32_z_size + f32_z_size; } return WorkspaceBundle{raw_ptr, {ws_bias_size, ws_z_size}}; } size_t BatchConvBiasForwardImpl::get_workspace_in_bytes( const TensorLayout& src, const TensorLayout& flt, const TensorLayout& bias, const TensorLayout& z, const TensorLayout& dst) { return get_workspace_bundle(nullptr, src, flt, bias, z, dst) .total_size_in_bytes(); } void BatchConvBiasForwardImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_in bias, _megdnn_tensor_in z, _megdnn_tensor_out dst, _megdnn_workspace workspace) { auto filter_meta = check_exec(src.layout, filter.layout, bias.layout, z.layout, dst.layout, workspace.size); WorkspaceBundle ws = get_workspace_bundle(workspace.raw_ptr, src.layout, filter.layout, bias.layout, z.layout, dst.layout); auto sfb = dst; if (bias.layout.dtype.enumv() != dst.layout.dtype.enumv()) { sfb = TensorND{ws.get(0), TensorLayout{dst.layout, bias.layout.dtype}}; } #define DISPATCH_RAW(in_dt, bias_dt, out_dt, cmode, func) \ else if (src.layout.dtype.enumv() == DTypeTrait::enumv && \ filter.layout.dtype.enumv() == DTypeTrait::enumv && \ bias.layout.dtype.enumv() == DTypeTrait::enumv && \ sfb.layout.dtype.enumv() == DTypeTrait::enumv && \ param().compute_mode == Param::ComputeMode::cmode) { \ MEGDNN_DISPATCH_CPU_KERN_OPR( \ func(src, filter, bias, sfb, nullptr, filter_meta)); \ } #define DISPATCH(in_dt, out_dt) \ DISPATCH_RAW(in_dt, out_dt, out_dt, DEFAULT, \ (forward_bias::ctype, \ DTypeTrait::ctype, \ DTypeTrait::ctype, \ DTypeTrait::ctype, \ BatchConvBiasForward::CanonizedFilterMeta, \ BatchConvFilterVisitor>)) if (0) { } DISPATCH(QuantizedS8, QuantizedS32) else { megdnn_throw(ssprintf( "unsupported naive BatchConvBias(%s, %s, %s, %s) -> %s", src.layout.dtype.name(), filter.layout.dtype.name(), bias.layout.dtype.name(), z.layout.dtype.name(), dst.layout.dtype.name())); } #undef DISPATCH #undef DISPATCH_RAW MEGDNN_DISPATCH_CPU_KERN_OPR(handle_z_inp_and_activation_naive( param().nonlineMode, sfb, z, dst, reinterpret_cast(ws.get(1)))); } std::vector BatchConvBiasForwardImpl::get_all_algorithms(const TensorLayout&, const TensorLayout&, const TensorLayout&, const TensorLayout&, const TensorLayout&) { return {static_cast(handle()) ->default_batch_conv_bias_fwd_algo()}; } BatchConvBiasForward::Algorithm* BatchConvBiasForwardImpl::get_algorithm_heuristic( const TensorLayout& /* src */, const TensorLayout& /* filter */, const TensorLayout& /* bias */, const TensorLayout& /* z */, const TensorLayout& /* dst */, size_t /* workspace_limit_in_bytes */ , const AlgoAttribute& attr) { auto algo = static_cast(handle()) ->default_batch_conv_bias_fwd_algo(); megdnn_assert(algo->contain_attribute(attr), "require algorithm with attribute%s, but heuristic " "algorithm(%s) with attribute%s ", Algorithm::attribute_str(attr).c_str(), algo->name(), Algorithm::attribute_str(algo->attribute()).c_str()); return algo; } BatchConvBiasForward::Algorithm* BatchConvBiasForwardImpl::get_algorithm_from_desc(const AlgorithmDesc& desc) { Algorithm* ret = static_cast(handle()) ->default_batch_conv_bias_fwd_algo(); megdnn_assert(desc == ret->info().desc); return ret; } // vim: syntax=cpp.doxygen