/** * \file sdk/load-and-run/src/mgblar.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2020 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ #include "./mgblar.h" #include "./infile_persistent_cache.h" #include "./json_loader.h" #include "./npy.h" #include "megbrain/comp_node_env.h" #include "megbrain/gopt/inference.h" #include "megbrain/graph/extern_copr_api.h" #include "megbrain/opr/dnn/convolution.h" #include "megbrain/opr/io.h" #include "megbrain/opr/utility.h" #include "megbrain/plugin/cpu_dispatch_checker.h" #include "megbrain/plugin/num_range_checker.h" #include "megbrain/plugin/opr_io_dump.h" #include "megbrain/plugin/profiler.h" #include "megbrain/plugin/var_value_checker.h" #include "megbrain/serialization/extern_c_opr.h" #include "megbrain/serialization/serializer.h" #include "megbrain/utils/debug.h" #include "megbrain/system.h" #include "megbrain/version.h" #include "megdnn/version.h" #include #include #include #include #include #include #include #include #if defined(_WIN32) #include #define F_OK 0 #define access(a, b) _access(a, b) #elif __linux__ || __unix__ || __APPLE__ #include #include #endif #if MGB_ENABLE_TENSOR_RT #include "megbrain/tensorrt/tensorrt_engine_cache.h" #endif using namespace mgb; namespace { const char* OPTIONS_DESC = R"__usage__( --cpu|--cpu-default )__usage__" R"__usage__( Require to compute on CPU or OpenCL. By default CUDA is used if available, and CPU is used if CUDA is not available. Use --cpu-default to compute on CPU and dispatch all tasks in the caller thread. --multithread|--multithread-default Use --multithread to compute on CPU with multi threads. Use --multithread-default to compute on CPU with multi threads and the caller thread is main thread of the multi thread pool, follow by thread number --multi-thread-core-ids The multi thread affinity core set, separated with ',', the number of digital will be the thread number. for example:--multi-thread-core-ids "0,1,2,3", the number thread if 4,the main thread binding the last core '3', for best performance, the main thread should binding to the fast core. --profile|--profile-host Write profiling result to given file. The output file is in JSON format and can be processed by scripts in MegHair/utils/debug. Note: For some backends (like opencl), special options need to be enabled for profiling device time, which may cause additional overhead and make it hard to profile host time. Use --profile-host to focus on host time profiling. --input [ filepath | string] Set up inputs for megbrain model. for example: --data image.ppm --data param.json --data bbox:bbox.npy@batchid:b.npy --data rect:[0,0,227,227]; batchid:0,1,2,3. --io-dump or --bin-io-dump should be enabled at the same time. --io-dump | --bin-io-dump Dump input/output values of all internal variables to output file or directory, in text or binary format. The binary file can be parsed by `megbrain.plugin.load_tensor_binary`. --io-dump-stdout | --io-dump-stderr Dump input/output values of all internal variables to stdout or stderr in text format --bin-out-dump Dump output tensor values in binary format to given directory. --iter Number of iterations to run for each testcase. --warmup-iter Number of warm-up iterations, which are not included in the time statistics. --range Enable tensor value range check. Exception would be raised if the absolute value of any element of any variable does not fit in given range. This can be used to debug NaN values. --check-dispatch Enable CPU dispatch checker, which prints a warning message if on operator does not the dispatch function. This is used to find potential bugs in MegDNN. --check-var-value Enable VarValueChecker plugin. Refer to its doc for more details. --no-sanity-check Disable var sanity check on the first run. Var sanity check is enabled on the first-time execution by default, and can be used to find some potential memory access errors in the operator implementation. --disable-mem-opt Disable memory optimizations. This is used to check whether memory optimization is the cause for unexpected behavior. --fake-first Enable fake exec for the first run. In fake exec mode, some initialization job would be done, but no actual computing is performed. This can be used in an SDK right after loading the model to reduce execution latency in the real fist-time computing. It requires input shapes to be correctly setup. --const-shape Set `GraphLoadConfig::const_var_shape` to true before loading the graph. This can be used to reduce memory usage since some static inference data structures can be omitted. --share-param-mem Share the memory used by model params with model storage. This can be used to reduce memory usage when computing on CPU. --record-comp-seq | --record-comp-seq2 Record the computing sequence, in level 1 or 2. It reduces overhead of API calls of some asynchronous computing devices, especially for OpenCL. In level 2 the computing graph can be destructed to reduce memory usage. Read the doc of `ComputingGraph::Options::comp_node_seq_record_level` for more details. )__usage__" #if MGB_ENABLE_FASTRUN R"__usage__( --fast-run Enable fast-run mode. Operators with multiple algorithms would be profiled on the real device with actual input shapes. See `mgb::gopt::enable_opr_algo_profiling_inplace` for more details. )__usage__" #endif R"__usage__( --fast-run-algo-policy It will read the cache file before profile, and save new fastrun in cache file. --reproducible Enable choose algo which is reproducible. It mainly used for cudnn algos. See https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#reproducibility for more details. --wait-gdb Print PID and wait for a line from stdin before starting execution. Useful for waiting for gdb attach. --c-opr-lib Load external operator library. It must implement MGB_C_OPR_INIT_FUNC_STR as the entry point. --c-opr-lib-with-param Run c opr lib with param, use to benchmark speed and check result, need c opr loader implemente `copr_param_device_ptr_malloc, copr_param_device_ptr_free and copr_param_device_ptr_h2d symbols`. --thread Number of threads to run concurrently. All threads perform the same work of loading and executing models. This is used for test thread safety, not for speed up on multiple cores. --disable-assert-throw Do not throw exception in case AssertEqual fails. Note that the exit code would also be zero if this option is enabled. This should only be used for debug. --copy-to-host Whether copy output from device to host. This is used for checking the performance in real scenarios including output copy. --workspace-limit set workspace_limit for execution strategy for oprs with multiple algorithms. The default is SIZE_MAX(bytes). --verbose Increase verbosity for megbrain log. )__usage__" #if MGB_ENABLE_TENSOR_RT R"__usage__( --tensorrt Execute supported operators with TensorRT. Can only be used on Nvidia GPUs, i.e. comp node is xpu or gpu. --tensorrt-cache Set the TensorRT engine cache path for serialized prebuilt ICudaEngine )__usage__" #endif R"__usage__( --enable-jit Execute supported operators with JIT(now only support NVRTC). Can only be used on Nvidia GPUs. )__usage__" R"__usage__( --enable-chwn4 Execute operators with kernels implemented in MegDNN with CHWN4 tensor format. Can only be used on Nvidia GPUs, whose compute capability is above 6.1. )__usage__" R"__usage__( --enable-nchw44 Execute operators with kernels implemented in MegDNN with NCHW44 tensor format. This can only be used on arm of armv7 and arm64, support data tyep of float32, qint8 and int8x8x16. )__usage__" R"__usage__( --enable-nhw88 Execute operators with kernels implemented in MegDNN with NCHW88 tensor format. This can only be used on x86 with data type float. )__usage__" R"__usage__( --enable-nhw44-dot Execute operators with kernels implemented in MegDNN with NCHW44-DOT tensor format. This Can only be used on arm32 and arm64 with dot-product supported, and only support qint8 model )__usage__" R"__usage__( --weight-preprocess Execute operators with weight preprocess, which can optimize the operator execution time with algo of winograd, im2col ,etc., but it may consume more memory. )__usage__" R"__usage__( --enable-fuse-preprocess Fusion astype\pad_channel\dimshuffle and etc opr from h2d op )__usage__" ; struct DataParser { struct Brace { std::weak_ptr parent; std::vector> chidren; }; void feed(const std::string& path) { std::string blob_name = "data", blob_string = path; size_t sep = path.find(":"); if (sep != std::string::npos) { blob_name = path.substr(0, sep); blob_string = path.substr(sep + 1); } auto endWith = [blob_string](std::string suffix) -> bool { return blob_string.rfind(suffix) == (blob_string.length() - suffix.length()); }; if (endWith(".ppm") || endWith(".pgm")) { parse_image(blob_name, blob_string); } else if (endWith(".json")) { parse_json(blob_string); } else if (endWith(".npy")) { parse_npy(blob_name, blob_string); } else { parse_string(blob_name, blob_string); } } std::map inputs; private: void parse_json(const std::string& path) { JsonLoader json; std::shared_ptr root = json.load(path.c_str()); mgb_assert(root != nullptr, "parse json %s fail", path.c_str()); // parse json to data map const std::string SHAPE = "shape", TYPE = "type", RAW = "raw"; for (auto& item : root->objects()) { auto&& value = *item.second; auto&& shape = value[SHAPE]; mgb_assert(shape->is_array()); auto&& type = value[TYPE]; mgb_assert(type->is_str()); auto&& raw = value[RAW]; mgb_assert(raw->is_array()); megdnn::SmallVector data_shape; for (auto&& shape_ptr : shape->array()) { data_shape.append( {static_cast(std::round(shape_ptr->number()))}); } // get type const std::map type_map = { {"float32", dtype::Float32()}, {"float", dtype::Float32()}, {"int32", dtype::Int32()}, {"int", dtype::Int32()}, {"int8", dtype::Int8()}, {"uint8", dtype::Uint8()}}; const std::string& type_str = type->str(); mgb_assert(type_map.find(type_str) != type_map.end(), "unknown json data type for --data"); DType datatype = type_map.at(type_str); HostTensorND hv; hv.comp_node(mgb::CompNode::default_cpu(), true) .dtype(datatype) .resize(data_shape); dt_byte* raw_ptr = hv.raw_ptr(); size_t elem_size = datatype.size(); // get raw const size_t array_size = raw->len(); for (size_t idx = 0; idx < array_size; ++idx) { double tmp = (*raw)[idx]->number(); switch (datatype.enumv()) { case megdnn::DTypeEnum::Int32: { int32_t ival = std::round(tmp); memcpy(raw_ptr + idx * elem_size, &ival, elem_size); } break; case megdnn::DTypeEnum::Uint8: case megdnn::DTypeEnum::Int8: { int8_t cval = std::round(tmp); memcpy(raw_ptr + idx, &cval, sizeof(int8_t)); } break; case megdnn::DTypeEnum::Float32: { float fval = tmp; memcpy(raw_ptr + idx * elem_size, &fval, elem_size); } break; default: break; } } inputs.insert(std::make_pair(item.first, std::move(hv))); } } void parse_image(const std::string& name, const std::string& path) { // load ppm/pgm std::ifstream fin; fin.open(path, std::ifstream::binary | std::ifstream::in); mgb_assert(fin.is_open(), "open file %s failed for --input", path.c_str()); size_t w = 0, h = 0, channel = 0; char buf[128] = {0}; fin.getline(buf, 128); if ('5' == buf[1]) { channel = 1; } else if ('6' == buf[1]) { channel = 3; } else { mgb_assert(0, "not a formal ppm/pgm"); } while (fin.getline(buf, 128)) { // skip OCV comment, check // https://github.com/opencv/opencv/pull/17006 if (buf[0] == '#') { continue; } break; } std::stringstream ss; ss << std::string(buf); ss >> w; ss >> h; mgb_assert(w > 0 and h > 0); HostTensorND hv; hv.comp_node(mgb::CompNode::default_cpu(), true) .dtype(dtype::Uint8()) .resize({1, h, w, channel}); fin.read((char*)(hv.raw_ptr()), hv.layout().total_nr_elems()); fin.close(); inputs.insert(std::make_pair(name, std::move(hv))); } void parse_npy(const std::string& name, const std::string& path) { std::string type_str; std::vector stl_shape; std::vector raw; npy::LoadArrayFromNumpy(path, type_str, stl_shape, raw); megdnn::SmallVector shape; for (auto val : stl_shape) { shape.append({static_cast(val)}); } const std::map type_map = { {"f4", dtype::Float32()}, {"i4", dtype::Int32()}, {"i1", dtype::Int8()}, {"u1", dtype::Uint8()}}; megdnn::DType hv_type; for (auto& item : type_map) { if (type_str.find(item.first) != std::string::npos) { hv_type = item.second; break; } } HostTensorND hv; hv.comp_node(mgb::CompNode::default_cpu(), true) .dtype(hv_type) .resize(shape); dt_byte* raw_ptr = hv.raw_ptr(); memcpy(raw_ptr, raw.data(), raw.size()); inputs.insert(std::make_pair(name, std::move(hv))); } void parse_string(const std::string name, const std::string& str) { // data type megdnn::DType data_type = dtype::Int32(); if (str.find(".") != std::string::npos or str.find(".") != std::string::npos) { data_type = dtype::Float32(); } // shape size_t number_cnt = 0; std::shared_ptr brace_root = std::make_shared(); std::shared_ptr cur = brace_root; for (size_t i = 0; i < str.size(); ++i) { char c = str[i]; if (c == '[') { std::shared_ptr child = std::make_shared(); child->parent = cur; cur->chidren.emplace_back(child); cur = child; } else if (c == ']') { cur = cur->parent.lock(); } else if (c == ',') { number_cnt++; } continue; } ++number_cnt; mgb_assert(cur == brace_root, "braces not closed for --input"); megdnn::SmallVector shape; cur = brace_root; while (not cur->chidren.empty()) { shape.append({cur->chidren.size()}); number_cnt /= cur->chidren.size(); cur = cur->chidren[0]; } mgb_assert(number_cnt > 0); shape.append({number_cnt}); // data std::string json_arr; for (size_t i = 0; i < str.size(); ++i) { char c = str[i]; if (c != '[' and c != ']') { json_arr += c; } } json_arr = "[" + json_arr + "]"; // reuse json parser to resolve raw data JsonLoader json; std::shared_ptr json_root = json.load(json_arr.data(), json_arr.size()); mgb_assert(json_root != nullptr, "parse json fail in parse_string"); HostTensorND hv; hv.comp_node(mgb::CompNode::default_cpu(), true) .dtype(data_type) .resize(shape); dt_byte* raw_ptr = hv.raw_ptr(); const size_t array_len = json_root->len(); const size_t elem_size = data_type.size(); for (size_t idx = 0; idx < array_len; ++idx) { double tmp = json_root->array()[idx]->number(); switch (data_type.enumv()) { case megdnn::DTypeEnum::Int32: { int32_t ival = std::round(tmp); memcpy(raw_ptr + idx * elem_size, &ival, elem_size); } break; case megdnn::DTypeEnum::Float32: { float fval = tmp; memcpy(raw_ptr + idx * elem_size, &fval, elem_size); } break; default: break; } } inputs.insert(std::make_pair(name, std::move(hv))); }; }; struct Args { int args_parse_ret = 0; std::string model_path; struct COprArgs { //! for run c opr bool is_run_c_opr = false; bool is_run_c_opr_with_param = false; typedef void (*COPR_PARAM_DEVICE_PTR_MEM_T)(ExternCOprParam* param); typedef void (*COPR_PARAM_DEVICE_PTR_H2D_T)( ExternCOprParam* param, void* host_ptr, size_t extern_device_tensor_id); COPR_PARAM_DEVICE_PTR_MEM_T copr_param_device_ptr_malloc = nullptr; COPR_PARAM_DEVICE_PTR_MEM_T copr_param_device_ptr_free = nullptr; COPR_PARAM_DEVICE_PTR_H2D_T copr_param_device_ptr_h2d = nullptr; }; COprArgs c_opr_args; bool disable_assert_throw = false; bool share_param_mem = false; #if MGB_ENABLE_FASTRUN bool use_fast_run = false; #endif bool reproducible = false; std::string fast_run_cache_path; bool copy_to_host = false; int nr_run = 10; int nr_warmup = 1; int nr_thread = 1; int multithread_number = 1; size_t workspace_limit = SIZE_MAX; std::vector data_files; serialization::GraphLoader::LoadResult load_ret; #if MGB_ENABLE_JSON std::unique_ptr profiler; #endif std::string profiler_output; std::string bin_out_dump; std::unique_ptr iodump; std::unique_ptr num_range_checker; std::unique_ptr cpu_dispatch_checker; std::unique_ptr var_value_checker; serialization::GraphLoader::LoadConfig load_config; thin_function affinity_cb; static Args from_argv(int argc, char **argv); }; uint32_t read_nr_test(serialization::InputFile &fin) { char magic[8]; fin.read(magic, sizeof(magic)); if (strncmp(magic, "mgbtest0", 8)) { fin.rewind(); return 0; } uint32_t ret; fin.read(&ret, sizeof(ret)); return ret; } size_t get_file_size(FILE *fptr) { fseek(fptr, 0, SEEK_END); size_t size = ftell(fptr); fseek(fptr, 0, SEEK_SET); return size; } /** * \brief dump output tensor. * * graph would be destructed if comp_node_seq_record_level == 2; so we should * store graph info before graph_compile(). */ class OutputDumper { struct DumpInfo { HostTensorND hv = {}; std::string var_info; std::string owner_inputs_info; size_t id; }; SmallVector m_infos; size_t m_run_id = 0; size_t m_bind_id = 0; const Args& m_env; public: OutputDumper(const Args& env) : m_env{env} { for (auto&& i : m_env.load_ret.output_var_list) { auto&& var = i.node(); DumpInfo info; info.var_info = cg::dump_var_info({var}); info.owner_inputs_info = cg::dump_var_info(var->owner_opr()->input()); info.id = var->id(); m_infos.push_back(info); } } ComputingGraph::Callback bind() { auto& info = m_infos.at(m_bind_id++); ComputingGraph::Callback cb = [&info](const DeviceTensorND& dv) { info.hv.copy_from(dv); }; return cb; } void write_to_file() { if (!m_env.bin_out_dump.empty()) { for (auto&& info : m_infos) { auto value = debug::dump_tensor( info.hv, ssprintf("var=%s owner_opr_inputs=%s", info.var_info.c_str(), info.owner_inputs_info.c_str())); debug::write_to_file( ssprintf("%s/run%zu-var%zd", m_env.bin_out_dump.c_str(), m_run_id, info.id) .c_str(), value); } } m_run_id ++; } }; void run_test_st(Args &env) { std::unique_ptr inp_file; if (env.share_param_mem) { FILE *fin = fopen(env.model_path.c_str(), "rb"); mgb_assert(fin, "failed to open %s: %s", env.model_path.c_str(), strerror(errno)); auto size = get_file_size(fin); void *ptr = malloc(size); std::shared_ptr buf{ptr, free}; auto nr = fread(buf.get(), 1, size, fin); mgb_assert(nr == size); fclose(fin); inp_file = serialization::InputFile::make_mem_proxy(buf, size); } else { inp_file = serialization::InputFile::make_fs( env.model_path.c_str()); } auto nr_test = read_nr_test(*inp_file); auto format = serialization::GraphLoader::identify_graph_dump_format(*inp_file); mgb_assert(format.valid(), "invalid model: unknown model format, please make sure input " "file is generated by GraphDumper"); auto loader = serialization::GraphLoader::make(std::move(inp_file), format.val()); RealTimer timer; env.load_ret = loader->load(env.load_config, false); // graph is no longer needed; reset so memory can be reclaimed env.load_config.comp_graph.reset(); printf("load model: %.3fms\n", timer.get_msecs_reset()); // compile function to compute all outputs ComputingGraph::OutputSpec out_spec; std::string output_names; OutputDumper output_dumper(env); for (auto&& i : env.load_ret.output_var_list) { if (&i != env.load_ret.output_var_list.data()) { output_names += " "; } output_names.append(i.node()->name() + i.shape().to_string()); ComputingGraph::Callback cb; if (!env.bin_out_dump.empty()) { cb = output_dumper.bind(); } else if (env.copy_to_host) { HostTensorND val; cb = [val](const DeviceTensorND& dv) mutable { val.copy_from(dv); }; } out_spec.emplace_back(i, std::move(cb)); } if (env.disable_assert_throw) { auto on_opr = [](cg::OperatorNodeBase* opr) { if (opr->same_type()) { opr->cast_final().disable_throw_on_error(); } }; cg::DepOprIter iter{on_opr}; for (auto&& i : out_spec) { iter.add(i.first.node()->owner_opr()); } } SymbolVarArray vars; for (auto i : out_spec) { vars.push_back(i.first); } mgb::gopt::set_opr_algo_workspace_limit_inplace(vars, env.workspace_limit); using S = opr::mixin::Convolution::ExecutionPolicy::Strategy; S strategy = S::HEURISTIC; #if MGB_ENABLE_FASTRUN if (env.use_fast_run) { if (env.reproducible) { strategy = S::PROFILE_REPRODUCIBLE; } else { strategy = S::PROFILE; } } else if (env.reproducible) { strategy = S::HEURISTIC_REPRODUCIBLE; } #else if (env.reproducible) { strategy = S::HEURISTIC_REPRODUCIBLE; } #endif mgb::gopt::modify_opr_algo_strategy_inplace(vars, strategy); if (!env.fast_run_cache_path.empty()) { #if MGB_ENABLE_FASTRUN if (!access(env.fast_run_cache_path.c_str(), F_OK)) { #else mgb_assert(access(env.fast_run_cache_path.c_str(), F_OK) == 0, "fast-run cache file can't be accessed"); #endif FILE* fin = fopen(env.fast_run_cache_path.c_str(), "rb"); auto flen = get_file_size(fin); std::unique_ptr buf{new uint8_t[flen]}; size_t ret = fread(buf.get(), flen, 1, fin); MGB_MARK_USED_VAR(ret); mgb_assert(ret == 1, "read 1 block (got %zu), and block size %zu.", ret, flen); fclose(fin); PersistentCache::set_impl( std::make_shared(buf.get(), flen)); #if MGB_ENABLE_FASTRUN } else { mgb_assert(env.use_fast_run, "fast-run should be enabled"); PersistentCache::set_impl( std::make_shared()); } if (!env.use_fast_run) #endif mgb::gopt::enable_opr_use_profiling_cache_inplace(vars); } auto func = env.load_ret.graph_compile(out_spec); auto warmup = [&]() { printf("=== prepare: %.3fms; going to warmup\n", timer.get_msecs_reset()); for (int run = 0; run < env.nr_warmup; ++run) { func->execute().wait(); printf("warmup %d: %.3fms\n", run, timer.get_msecs_reset()); } }; auto run_iters = [&](uint32_t case_idx) -> float { double time_sqrsum = 0, time_sum = 0, min_time = std::numeric_limits::max(), max_time = 0; for (int run = 0; run < env.nr_run; ++run) { mgb_log_debug("load_and_run: before running iter %d", run); timer.reset(); func->execute(); mgb_log_debug("load_and_run: before waiting iter %d", run); auto exec_time = timer.get_msecs(); func->wait(); output_dumper.write_to_file(); auto cur = timer.get_msecs(); printf("iter %d/%d: %.3fms (exec=%.3f,device=%.3f)\n", run, env.nr_run, cur, exec_time, func->get_prev_exec_time() * 1e3); time_sum += cur; time_sqrsum += cur * cur; fflush(stdout); if (cur < min_time) { min_time = cur; } if (cur > max_time) { max_time = cur; } } printf("=== finished test #%u: time=%.3fms avg_time=%.3fms " "sd=%.3fms minmax=%.3f,%.3f\n\n", case_idx, time_sum, time_sum / env.nr_run, std::sqrt((time_sqrsum * env.nr_run - time_sum * time_sum) / (env.nr_run * (env.nr_run - 1))), min_time, max_time); return time_sum; }; if (nr_test) { // run testcase, generated by dump_with_testcase.py std::vector> inp_tensors; for (auto &&i: env.load_ret.tensor_map) { inp_tensors.emplace_back(i.first, i.second.get()); } std::sort(inp_tensors.begin(), inp_tensors.end()); printf("=== going to run %u testcases; output vars: %s\n", nr_test, output_names.c_str()); double tot_time = 0; for (uint32_t i = 0; i < nr_test; ++ i) { std::shared_ptr c_opr_param; auto dtype_cpp2c = [](DType dtype) -> MGBDType { switch (dtype.enumv()) { case DTypeEnum::Float32: return MGB_DTYPE_FLOAT32; case DTypeEnum::Int32: return MGB_DTYPE_INT32; case DTypeEnum::Int16: return MGB_DTYPE_INT16; case DTypeEnum::Uint8: return MGB_DTYPE_UINT8; #if !MEGDNN_DISABLE_FLOAT16 case DTypeEnum::Float16: return MGB_DTYPE_FLOAT16; #endif default: mgb_throw(InternalError, "unsupported dtype for extern C API: %s", dtype.name()); } }; auto tensor_shape_to_c = [](const TensorShape& shape, MGBTensorShape& mgb_shape) { mgb_assert(shape.ndim <= MGB_TENSOR_MAX_NDIM, "shape ndim too large: %zu", shape.ndim); mgb_shape.ndim = shape.ndim; for (size_t i = 0; i < shape.ndim; ++i) { mgb_shape.shape[i] = shape[i]; } }; if (env.c_opr_args.is_run_c_opr_with_param) { c_opr_param = std::make_shared(); memset(c_opr_param.get(), 0, sizeof(ExternCOprParam)); //! we just test input on npu case, do not test output on //! npu case, so we just init input shape and type c_opr_param->nr_input = inp_tensors.size(); c_opr_param->input = (ExternDeviceTensor*)malloc( sizeof(ExternDeviceTensor) * inp_tensors.size()); memset(c_opr_param->input, 0, sizeof(ExternDeviceTensor) * inp_tensors.size()); //! init input ExternDeviceTensor shape and dtype for (size_t input_index = 0; input_index < inp_tensors.size(); input_index++) { auto& mgb_tensor_layout = c_opr_param->input[input_index].layout; auto host_tensor_nd_p = inp_tensors[input_index].second; mgb_tensor_layout.dtype = dtype_cpp2c(host_tensor_nd_p->dtype()); tensor_shape_to_c(inp_tensors[input_index].second->shape(), mgb_tensor_layout.shape); } c_opr_param->nr_output = 0; //! now call copr_param_device_ptr_malloc to malloc //! device_ptr env.c_opr_args.copr_param_device_ptr_malloc(c_opr_param.get()); } loader = serialization::GraphLoader::make( loader->reset_file(), loader->format()); auto testcase = loader->load(env.load_config, false); mgb_assert(testcase.output_var_list.size() == inp_tensors.size()); for (size_t i = 0; i < inp_tensors.size(); ++ i) { auto &&opr = testcase.output_var_list[i].node()->owner_opr()-> cast_final_safe(); if (env.c_opr_args.is_run_c_opr_with_param) { //! now call copr_param_device_ptr_h2d to fill data env.c_opr_args.copr_param_device_ptr_h2d( c_opr_param.get(), opr.dev_data()->raw_ptr(), i); } else { inp_tensors[i].second->copy_from( HostTensorND::make_proxy(*opr.dev_data())); } } //! now config c opr dynamic param if (env.c_opr_args.is_run_c_opr_with_param) { config_extern_c_opr_dynamic_param(func, c_opr_param); } if (!i) { warmup(); } timer.reset(); printf("=== going to run test #%u for %d times\n", i, env.nr_run); if (!env.nr_run) { continue; } tot_time += run_iters(i); //! now free c opr device_ptr if (env.c_opr_args.is_run_c_opr_with_param) { env.c_opr_args.copr_param_device_ptr_free(c_opr_param.get()); free(c_opr_param->input); } } printf("=== total time: %.3fms\n", tot_time); } else if (not env.data_files.empty()) { mgb_assert(!env.c_opr_args.is_run_c_opr_with_param, "run c opr with param only support dump_with_testcase!!"); auto& tensormap = env.load_ret.tensor_map; DataParser parser; for (auto path : env.data_files) { parser.feed(path); } auto inputs = parser.inputs; if (inputs.size() > 1) { for (auto& i : inputs) { mgb_assert(tensormap.find(i.first) != tensormap.end()); auto& in = tensormap.find(i.first)->second; in->copy_from(i.second); } } else { auto& in = tensormap.begin()->second; in->copy_from(inputs.begin()->second); } warmup(); timer.reset(); printf("=== going to run input for %d times\n", env.nr_run); run_iters(0); } else { mgb_assert(!env.c_opr_args.is_run_c_opr_with_param, "run c opr with param only support dump_with_testcase!!"); // run speed test for a raw mgb graph mgb_assert(env.load_ret.tensor_map.empty(), "model should not require input values; input vars should be " "replaced by SharedDeviceTensor " "(i.e. megskull.opr.ParamProvider)"); warmup(); timer.reset(); printf("=== going to run for %d times; output vars: %s\n", env.nr_run, output_names.c_str()); for (int i = 0; i < env.nr_run; ++ i) { mgb_log_debug("load_and_run: before benchmark iter %d", i); auto start = timer.get_msecs(); func->execute().wait(); output_dumper.write_to_file(); printf("=== finished run #%d: time=%.3fms\n", i, timer.get_msecs() - start); fflush(stdout); } printf("avg time: %.3fms\n", timer.get_msecs() / env.nr_run); } #if MGB_ENABLE_JSON if (env.profiler) { env.profiler->to_json_full(func.get())->writeto_fpath( env.profiler_output); mgb_log("profiling result written to %s", env.profiler_output.c_str()); } #endif #if MGB_ENABLE_FASTRUN if (!env.fast_run_cache_path.empty()) { static_cast(PersistentCache::inst()) .dump_cache(env.fast_run_cache_path.c_str()); } #endif #if MGB_ENABLE_TENSOR_RT if (TensorRTEngineCache::enable_engine_cache()) { TensorRTEngineCache::inst().dump_cache(); } #endif } } // anonymous namespace int mgb_load_and_run_main(int argc, char** argv) { { auto v0 = get_version(); auto v1 = megdnn::get_version(); printf("mgb load-and-run: using MegBrain " "%d.%d.%d(%d) and MegDNN %d.%d.%d\n", v0.major, v0.minor, v0.patch, v0.is_dev, v1.major, v1.minor, v1.patch); } auto env = Args::from_argv(argc, argv); if (env.c_opr_args.is_run_c_opr_with_param) mgb_assert(env.c_opr_args.is_run_c_opr && env.c_opr_args.copr_param_device_ptr_malloc && env.c_opr_args.copr_param_device_ptr_free && env.c_opr_args.copr_param_device_ptr_h2d, "--c-opr-lib-with-param need config with --c-opr-lib, also " "extern c opr loader need implemente " "copr_param_device_ptr_malloc, copr_param_device_ptr_free " "and copr_param_device_ptr_h2d symbols"); if (env.args_parse_ret != 0) { return env.args_parse_ret; } if (env.nr_thread == 1) { run_test_st(env); } else { #if MGB_HAVE_THREAD mgb_log_warn("use %d threads", env.nr_thread); std::vector threads; auto run = [argc, argv]() { auto env = Args::from_argv(argc, argv); run_test_st(env); }; for (int i = 0; i < env.nr_thread; ++i) { threads.emplace_back(run); } for (auto&& i : threads) { i.join(); } #else mgb_log_error("%d threads requested, but load-and-run was compiled " "without thread support."); #endif } return 0; } Args Args::from_argv(int argc, char **argv) { Args ret; if (argc < 2) { printf("usage: %s [options...]\nWhere options are:%s", argv[0], OPTIONS_DESC); ret.args_parse_ret = -1; return ret; } set_log_level(LogLevel::WARN); ret.model_path = argv[1]; ret.load_config.comp_graph = ComputingGraph::make(); auto &&graph_opt = ret.load_config.comp_graph->options(); graph_opt.graph_opt_level = 0; for (int i = 2; i < argc; ++ i) { if (!strcmp(argv[i], "--cpu")) { mgb_log_warn("use cpu mode"); ret.load_config.comp_node_mapper = [](CompNode::Locator &loc) { loc.type = CompNode::DeviceType::CPU; }; continue; } if (!strcmp(argv[i], "--cpu-default")) { mgb_log_warn("use cpu:default mode"); ret.load_config.comp_node_mapper = [](CompNode::Locator &loc) { loc.type = CompNode::DeviceType::CPU; loc.device = CompNode::Locator::DEVICE_CPU_DEFAULT; }; continue; } if (!strcmp(argv[i], "--multithread")) { mgb_log_warn("use multithread mode"); ++ i; ret.multithread_number = std::stoi(argv[i]); ret.load_config.comp_node_mapper = [nr_threads = ret.multithread_number](CompNode::Locator& loc) { loc.type = CompNode::DeviceType::MULTITHREAD; loc.device = 0; loc.stream = nr_threads; }; continue; } if (!strcmp(argv[i], "--multithread-default")) { mgb_log_warn("use multithread:default mode"); ++i; ret.multithread_number = std::stoi(argv[i]); ret.load_config.comp_node_mapper = [nr_threads = ret.multithread_number]( CompNode::Locator& loc) { loc.type = CompNode::DeviceType::MULTITHREAD; loc.device = CompNode::Locator::DEVICE_MULTITHREAD_DEFAULT; loc.nr_threads = nr_threads; }; continue; } if (!strcmp(argv[i], "--multi-thread-core-ids")) { ++i; std::string core_id_string = argv[i]; std::stringstream input_stringstream(core_id_string); std::string id; size_t nr_threads = 0; std::vector core_ids; mgb_log_warn("multi thread core ids: %s", core_id_string.c_str()); while(getline(input_stringstream, id, ',')) { nr_threads++; core_ids.push_back(atoi(id.c_str())); } mgb_assert(ret.multithread_number > 0 && ret.load_config.comp_node_mapper, "the core id should set behind the --multithread param"); mgb_assert(static_cast(ret.multithread_number) == core_ids.size(), "the core id should equal to the multi thread number"); auto affinity_cb = [core_ids](int thread_id) { mgb::sys::set_cpu_affinity({core_ids[thread_id]}); }; CompNode::Locator loc; ret.load_config.comp_node_mapper(loc); mgb_assert(loc.type == CompNode::DeviceType::MULTITHREAD, "core id only set on multithread compnode"); auto cn = CompNode::load(loc); CompNodeEnv::from_comp_node(cn).cpu_env().set_affinity(affinity_cb); continue; } #if MGB_ENABLE_TENSOR_RT if (!strcmp(argv[i], "--tensorrt")) { mgb_log_warn("use tensorrt mode"); graph_opt.graph_opt.tensorrt = true; continue; } if (!strcmp(argv[i], "--tensorrt-cache")) { ++i; mgb_assert(i < argc, "value not given for --tensorrt-cache"); char* tensorrt_cache_path = argv[i]; mgb_log_warn("use tensorrt cache: %s", tensorrt_cache_path); TensorRTEngineCache::enable_engine_cache(true); TensorRTEngineCache::set_impl( std::make_shared( tensorrt_cache_path)); continue; } #endif #define cb(_layout) \ if (!strcmp(argv[i], "--enable-" #_layout)) { \ mgb_log_warn("enable " #_layout " optimization"); \ graph_opt.graph_opt.enable_##_layout(); \ continue; \ } cb(nchw4); cb(chwn4); cb(nchw44); cb(nchw88); cb(nchw32); cb(nhwcd4); #undef cb if (!strcmp(argv[i], "--enable-nchw44-dot")) { mgb_log_warn("enable-nchw44-dot optimization"); graph_opt.graph_opt.enable_nchw44_dot(); continue; } if (!strcmp(argv[i], "--enable-fuse-preprocess")) { mgb_log_warn("enable-fuse-preprocess optimization"); graph_opt.graph_opt.enable_fuse_preprocess(); continue; } if (!strcmp(argv[i], "--enable-fuse-conv-bias-nonlinearity")) { mgb_log_warn("enable fuse-conv-bias-nonlinearity optimization"); graph_opt.graph_opt.enable_fuse_conv_bias_nonlinearity(); continue; } if (!strcmp(argv[i], "--enable-fuse-conv-bias-with-z")) { mgb_log_warn("enable fuse_conv_bias_with_z optimization"); graph_opt.graph_opt.enable_fuse_conv_bias_with_z(); continue; } #if MGB_ENABLE_JSON if (!strcmp(argv[i], "--profile") || !strcmp(argv[i], "--profile-host")) { if (!strcmp(argv[i], "--profile")) { mgb_log_warn("enable profiling"); } else { mgb_log_warn("enable profiling for host"); } ++i; mgb_assert(i < argc, "output file not given for --profile"); ret.profiler = std::make_unique( ret.load_config.comp_graph.get()); ret.profiler_output = argv[i]; continue; } #endif if (!strcmp(argv[i], "--input")) { ++i; mgb_assert(i < argc, "input file not given for --input"); size_t start = 0; std::string cmd = argv[i]; while (true) { auto end = cmd.find(";", start); if (end == std::string::npos) { ret.data_files.emplace_back(cmd.substr(start)); break; } std::string substr = cmd.substr(start, end - start); ret.data_files.emplace_back(substr); start = end + 1; } continue; } if (!strcmp(argv[i], "--io-dump")) { mgb_log_warn("enable opr io dump"); ++ i; mgb_assert(i < argc, "output file not given for --io-dump"); auto iodump = std::make_unique( ret.load_config.comp_graph.get(), argv[i]); iodump->print_addr(false); ret.iodump = std::move(iodump); continue; } if (!strcmp(argv[i], "--io-dump-stdout")) { mgb_log_warn("enable opr io dump to stdout"); std::shared_ptr sp(stdout, [](FILE*){}); auto iodump = std::make_unique( ret.load_config.comp_graph.get(), sp); iodump->print_addr(false); ret.iodump = std::move(iodump); continue; } if (!strcmp(argv[i], "--io-dump-stderr")) { mgb_log_warn("enable opr io dump to stderr"); std::shared_ptr sp(stderr, [](FILE*){}); auto iodump = std::make_unique( ret.load_config.comp_graph.get(), sp); iodump->print_addr(false); ret.iodump = std::move(iodump); continue; } if (!strcmp(argv[i], "--bin-io-dump")) { mgb_log_warn("enable opr binary io dump"); ++ i; mgb_assert(i < argc, "output directory not given for --bin-io-dump"); ret.iodump = std::make_unique( ret.load_config.comp_graph.get(), argv[i]); continue; } if (!strcmp(argv[i], "--bin-out-dump")) { ++ i; mgb_assert(i < argc, "output directory not given for --bin-out-dump"); ret.bin_out_dump = argv[i]; continue; } if (!strcmp(argv[i], "--iter")) { ++ i; mgb_assert(i < argc, "value not given for --iter"); ret.nr_run = std::stoi(argv[i]); mgb_assert(ret.nr_run >= 0); continue; } if (!strcmp(argv[i], "--warmup-iter")) { ++ i; mgb_assert(i < argc, "value not given for --warmup-iter"); ret.nr_warmup = std::stoi(argv[i]); mgb_assert(ret.nr_warmup >= 0); continue; } if (!strcmp(argv[i], "--range")) { ++ i; mgb_assert(i < argc, "value not given for --range"); auto range = std::atof(argv[i]); mgb_assert(range > 0); ret.num_range_checker = std::make_unique( ret.load_config.comp_graph.get(), range); continue; } if (!strcmp(argv[i], "--check-dispatch")) { ret.cpu_dispatch_checker = std::make_unique( ret.load_config.comp_graph.get()); continue; } if (!strcmp(argv[i], "--disable-mem-opt")) { graph_opt.seq_opt.enable_mem_reuse_alloc = false; graph_opt.seq_opt.enable_mem_plan_opt = false; continue; } if (!strcmp(argv[i], "--copy-to-host")) { ret.copy_to_host = true; continue; } if (!strcmp(argv[i], "--verbose")) { graph_opt.log_level = 2; set_log_level(LogLevel::DEBUG); continue; } if (!strcmp(argv[i], "--check-var-value")) { ++ i; mgb_assert(i < argc, "value not given for --check-var-value"); std::string arg(argv[i]); auto sep = arg.find(':'); size_t switch_interval, start = 0; if (sep != std::string::npos) { switch_interval = std::stoul(arg.substr(0, sep)); start = std::stoul(arg.substr(sep + 1)); } else { switch_interval = std::stoul(arg); } ret.var_value_checker = std::make_unique( ret.load_config.comp_graph.get(), switch_interval, start); continue; } if (!strcmp(argv[i], "--no-sanity-check")) { graph_opt.var_sanity_check_first_run = false; continue; } if (!strcmp(argv[i], "--fake-first")) { graph_opt.fake_next_exec = true; continue; } if (!strcmp(argv[i], "--record-comp-seq")) { graph_opt.comp_node_seq_record_level = 1; continue; } if (!strcmp(argv[i], "--record-comp-seq2")) { graph_opt.comp_node_seq_record_level = 2; continue; } #if MGB_ENABLE_FASTRUN if (!strcmp(argv[i], "--fast-run")) { ret.use_fast_run = true; continue; } #endif if (!strcmp(argv[i], "--fast-run-algo-policy")) { ++i; ret.fast_run_cache_path = argv[i]; continue; } if (!strcmp(argv[i], "--reproducible")) { ret.reproducible = true; continue; } if (!strcmp(argv[i], "--const-shape")) { ret.load_config.const_var_shape = true; continue; } if (!strcmp(argv[i], "--share-param-mem")) { ret.share_param_mem = true; continue; } if (!strcmp(argv[i], "--disable-assert-throw")) { ret.disable_assert_throw = true; continue; } if (!strcmp(argv[i], "--workspace-limit")) { ++i; ret.workspace_limit = std::stoll(argv[i]); continue; } #if __linux__ || __unix__ if (!strcmp(argv[i], "--wait-gdb")) { printf("wait for gdb attach (pid=%d): ", getpid()); getchar(); continue; } if (!strcmp(argv[i], "--c-opr-lib")) { ++ i; ret.c_opr_args.is_run_c_opr = true; mgb_assert(i < argc, "value not given for --c-opr-lib"); auto handle = dlopen(argv[i], RTLD_LAZY); mgb_assert(handle, "failed to open c opr lib %s: %s", argv[i], dlerror()); const char* entry = MGB_C_OPR_INIT_FUNC_STR; auto func = dlsym(handle, entry); mgb_assert(func, "can not resolve %s: %s", entry, dlerror()); typedef void (*entry_f_t)(void*); reinterpret_cast(func)( reinterpret_cast( &mgb_get_extern_c_opr_api_versioned)); printf("loaded C opr library: %s\n", argv[i]); entry = "copr_param_device_ptr_malloc"; func = dlsym(handle, entry); if (func) { printf("get %s from: %s\n", entry, argv[i]); ret.c_opr_args.copr_param_device_ptr_malloc = reinterpret_cast( func); } entry = "copr_param_device_ptr_free"; func = dlsym(handle, entry); if (func) { printf("get %s from: %s\n", entry, argv[i]); ret.c_opr_args.copr_param_device_ptr_free = reinterpret_cast( func); } entry = "copr_param_device_ptr_h2d"; func = dlsym(handle, entry); if (func) { printf("get %s from: %s\n", entry, argv[i]); ret.c_opr_args.copr_param_device_ptr_h2d = reinterpret_cast( func); } continue; } if (!strcmp(argv[i], "--c-opr-lib-with-param")) { ret.c_opr_args.is_run_c_opr_with_param = true; continue; } #endif if (!strcmp(argv[i], "--thread")) { ++ i; mgb_assert(i < argc, "value not given for --thread"); ret.nr_thread = std::stoi(argv[i]); continue; } if (!strcmp(argv[i], "--enable-jit")) { graph_opt.graph_opt.jit = 1; continue; } if (!strcmp(argv[i], "--weight-preprocess")) { mgb_log_warn("enable weight-preprocess optimization"); graph_opt.graph_opt.enable_weight_preprocess(); continue; } fprintf(stderr, "invalid arg: %s\n", argv[i]); ret.args_parse_ret = -1; return ret; } return ret; } // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}