# -*- coding: utf-8 -*- import os import platform from typing import Tuple import numpy as np import pytest from utils import get_var_value, make_tensor, opr_test import megengine.functional as F from megengine import Tensor from megengine.core._imperative_rt.core2 import create_complex from megengine.core._trace_option import use_symbolic_shape from megengine.core.tensor import megbrain_graph as G from megengine.core.tensor.utils import astensor1d from megengine.jit import trace from megengine.utils.network import Network, set_symbolic_shape from megengine.utils.network_node import VarNode def test_eye(): dtypes = [np.float32, np.bool] cases = [{"input": [10, 20]}, {"input": [30]}] for dtype in dtypes: for case in cases: np.testing.assert_allclose( F.eye(case["input"], dtype=dtype).numpy(), np.eye(*case["input"]).astype(dtype), ) np.testing.assert_allclose( F.eye(*case["input"], dtype=dtype).numpy(), np.eye(*case["input"]).astype(dtype), ) np.testing.assert_allclose( F.eye(Tensor(case["input"]), dtype=dtype).numpy(), np.eye(*case["input"]).astype(dtype), ) @pytest.mark.parametrize("is_varnode", [False, True]) def test_diag(is_varnode): if is_varnode: network = Network() else: network = None shapes = [(10, 10), (6, 9), (8, 7), (8,)] cases = [] for shp in shapes: cases.append({"input": [np.random.random(shp).astype("float32")]}) for axis in range(-2, 3): def run(data): return F.diag(data, k=axis) opr_test(cases, run, ref_fn=lambda x: np.diag(x, axis), network=network) def test_full(): shape = (2, 3) values = [True, 4, 5.0] for value in values: np.testing.assert_allclose(F.full(shape, value).numpy(), np.full(shape, value)) assert F.full(shape, value).dtype == Tensor(value).dtype @pytest.mark.parametrize("is_varnode", [True, False]) def test_cumsum(is_varnode): if is_varnode: network = Network() else: network = None x = Tensor([[1, 2, 3], [4, 5, 6]], np.int32) y = F.cumsum(x, -1) np.testing.assert_equal( y.numpy(), np.array([[1, 3, 6], [4, 9, 15]]).astype(np.int32) ) @pytest.mark.parametrize("is_varnode", [True, False]) def test_concat(is_varnode): if is_varnode: network = Network() else: network = None def get_data_shape(length: int): return (length, 2, 3) data1 = np.random.random(get_data_shape(5)).astype("float32") data2 = np.random.random(get_data_shape(6)).astype("float32") data3 = np.random.random(get_data_shape(7)).astype("float32") def run(data1, data2): return F.concat([data1, data2]) cases = [{"input": [data1, data2]}, {"input": [data1, data3]}] opr_test(cases, run, ref_fn=lambda x, y: np.concatenate([x, y]), network=network) x1 = Tensor(np.arange(0, 6, dtype=np.float32).reshape((2, 3))) x2 = Tensor(np.arange(6, 12, dtype=np.float32).reshape((2, 3))) y = F.concat([x1, x2], axis=-1) np.testing.assert_equal( y.numpy(), np.array([[0, 1, 2, 6, 7, 8], [3, 4, 5, 9, 10, 11]]).astype(np.float32), ) @pytest.mark.parametrize("is_varnode", [True, False]) def test_condtake(is_varnode): if is_varnode: network = Network() else: network = None x = np.array([[1, 2, 3], [4, 5, 6]]).astype("float32") y = np.array([[True, False, True], [False, True, True]]) xx = make_tensor(x, network) yy = make_tensor(y, network) val, idx = F.cond_take(yy, xx) if is_varnode: np.testing.assert_equal(get_var_value(val), x[y]) np.testing.assert_equal(get_var_value(idx), np.where(y.reshape(-1))[0]) else: np.testing.assert_equal(val.numpy(), x[y]) np.testing.assert_equal(idx.numpy(), np.where(y.reshape(-1))[0]) @pytest.mark.parametrize("is_varnode", [True, False]) def test_concat_stack_device(is_varnode): if is_varnode: network = Network() else: network = None data1 = make_tensor(np.random.random((2, 2, 2)).astype("float32"), network, "cpu0") data2 = make_tensor(np.random.random((2, 2, 2)).astype("float32"), network, "cpu1") data3 = make_tensor(np.random.random((2, 2, 2)).astype("float32"), network, "cpu0") for func in [F.concat, F.stack]: out = F.concat([data1, data2], device="cpu1") assert str(out.device).split(":")[0] == "cpu1" out = F.concat([data1, data3]) assert str(out.device).split(":")[0] == "cpu0" with pytest.raises(RuntimeError): try: out = F.concat([data1, data2]) except: raise RuntimeError("inputs have different devices") @pytest.mark.parametrize("is_varnode", [True, False]) def test_stack(is_varnode): if is_varnode: network = Network() else: network = None data1 = np.random.random((3, 2, 2)).astype("float32") data2 = np.random.random((3, 2, 2)).astype("float32") data3 = np.random.random((3, 2, 2)).astype("float32") cases = [{"input": [data1, data2]}, {"input": [data1, data3]}] for ai in range(3): def run(data1, data2): return F.stack([data1, data2], axis=ai) opr_test( cases, run, ref_fn=lambda x, y: np.stack([x, y], axis=ai), network=network ) x1 = Tensor(np.arange(0, 3, dtype=np.float32).reshape((3))) x2 = Tensor(np.arange(6, 9, dtype=np.float32).reshape((3))) y = F.stack([x1, x2], axis=-1) np.testing.assert_equal( y.numpy(), np.array([[0, 6], [1, 7], [2, 8]]).astype(np.float32) ) x1 = Tensor(np.arange(0, 3, dtype=np.float32).reshape((3))) x2 = Tensor(np.arange(6, 9, dtype=np.float32).reshape((3))) y = F.stack([x1, x2], axis=-1) np.testing.assert_equal( y.numpy(), np.array([[0, 6], [1, 7], [2, 8]]).astype(np.float32) ) x1 = Tensor(np.random.rand(600)) x2 = F.broadcast_to(Tensor(np.array(3)), (600,)) y = F.stack([x2, x1], axis=0) np.testing.assert_equal(y.numpy(), np.stack((x2.numpy(), x1.numpy()), axis=0)) y = F.stack([x2, x2], axis=0) np.testing.assert_equal(y.numpy(), np.stack((x2.numpy(), x2.numpy()), axis=0)) @pytest.mark.parametrize("is_varnode", [True, False]) def test_split_basic(is_varnode): if is_varnode: network = Network() saved_symbolic_shape = set_symbolic_shape(False) else: network = None data = np.random.random((2, 3, 4, 5)).astype(np.float32) inp = make_tensor(data, network) mge_out0 = F.split(inp, 2, axis=3) mge_out1 = F.split(inp, [3], axis=3) np_out = np.split(data, [3, 5], axis=3) assert len(mge_out0) == 2 assert len(mge_out1) == 2 np.testing.assert_equal(mge_out0[0].numpy(), np_out[0]) np.testing.assert_equal(mge_out1[0].numpy(), np_out[0]) np.testing.assert_equal(mge_out0[1].numpy(), np_out[1]) np.testing.assert_equal(mge_out1[1].numpy(), np_out[1]) try: F.split(inp, 4) assert False except ValueError as e: pass try: F.split(inp, [3, 2, 5], axis=3) assert False except ValueError as e: assert str(e) == "Invalid nsplits_or_secions: [3, 2, 5]" if is_varnode: set_symbolic_shape(saved_symbolic_shape) @pytest.mark.parametrize("symbolic", [None, False, True]) def test_split(symbolic): x = Tensor(np.random.random((10, 20)), dtype=np.float32) y = F.split(x, 3, axis=-1) z = F.split(x, [6, 17], axis=-1) assert str([i.numpy().shape for i in y]) == "[(10, 7), (10, 7), (10, 6)]" assert str([i.numpy().shape for i in z]) == "[(10, 6), (10, 11), (10, 3)]" inp1 = np.random.random((3, 4, 5, 6)).astype(np.float32) inp2 = np.random.random((0, 4, 5, 6)).astype(np.float32) def ref(inp, nsplits_or_sections, axis): return np.split(inp, nsplits_or_sections, axis) def func(inp, nsplits_or_sections, axis): return F.split(inp, nsplits_or_sections, axis) cases = [ (inp1, 2, 3), (inp1, [3], 3), (inp1, [3, 3, 5], 3), (inp2, 2, 3), (inp2, [3], 3), (inp2, [3, 3, 5], 3), ] for case in cases: if symbolic is None: fn = func else: fn = trace(symbolic=symbolic)(func) for i in range(3 if symbolic is not None else 1): ref_out = ref(*case) out = fn(Tensor(case[0]), case[1], case[2]) assert len(ref_out) == len(out) for idx in range(len(ref_out)): np.testing.assert_equal(ref_out[idx], out[idx].numpy()) def test_gather(): x = Tensor([[1, 2], [3, 4], [5, 6],]) index = Tensor([[0, 1], [1, 0], [1, 1]]) y = F.gather(x, 1, index) np.testing.assert_equal( y.numpy(), np.array([[1, 2], [4, 3], [6, 6]]).astype(np.int32) ) def test_scatter(): x = Tensor(np.zeros(shape=(3, 5), dtype=np.float32)) source = Tensor( [ [0.9935, 0.9465, 0.2256, 0.8926, 0.4396], [0.7723, 0.0718, 0.5939, 0.357, 0.4576], ] ) index = Tensor([[0, 2, 0, 2, 1], [2, 0, 1, 1, 2]]) y = F.scatter(x, -2, index, source) np.testing.assert_equal( y.numpy().round(decimals=4), np.array( [ [0.9935, 0.0718, 0.2256, 0.0, 0.0], [0.0, 0.0, 0.5939, 0.357, 0.4396], [0.7723, 0.9465, 0.0, 0.8926, 0.4576], ] ).astype(np.float32), ) @pytest.mark.parametrize("is_varnode", [True, False]) def test_swapaxes(is_varnode): if is_varnode: network = Network() else: network = None x = Tensor(np.array([[1, 2, 3]], dtype=np.int32)) y = F.swapaxes(x, 0, 1) np.testing.assert_equal(y.numpy(), np.array([[1], [2], [3]]).astype(np.int32)) @pytest.mark.parametrize("is_varnode", [True, False]) def test_reshape(is_varnode): if is_varnode: network = Network() else: network = None x = np.arange(6, dtype="float32") xx = make_tensor(x, network) y = x.reshape(1, 2, 3) for shape in [ (1, 2, 3), (1, -1, 3), (1, make_tensor(-1, network), 3), np.array([1, -1, 3], dtype="int32"), make_tensor([1, -1, 3], network), ]: yy = F.reshape(xx, shape) np.testing.assert_equal(yy.numpy(), y) @pytest.mark.parametrize("is_varnode", [True, False]) def test_broadcast_auto_infer(is_varnode): if is_varnode: network = Network() else: network = None x = np.random.random((1, 2, 3)).astype(np.float32) xx = make_tensor(x, network) for shape in [ (1, 2, 3), (1, None, 3), ]: yy = F.broadcast_to(xx, shape) np.testing.assert_equal(yy.numpy(), x) with pytest.raises(ValueError): F.broadcast_to(xx, (1, -1, 3)) with pytest.raises(ValueError): F.broadcast_to(xx, (None, 1, 2, 3)) F.broadcast_to(xx, (1, None, 2, 3)) t = make_tensor(2, network) F.broadcast_to(xx, (t, None, 2, 3)) @pytest.mark.parametrize("is_trace", [True, False]) def test_reshape_on_empty_tensor(is_trace): input1_shape = (100, 0, 1) output1_shape = (100, 0, 10) data1 = Tensor(np.random.random(input1_shape).astype(np.float32)) input2_shape = (10, 0) output2_shape = (0,) data2 = Tensor(np.random.random(input2_shape).astype(np.float32)) input3_shape = (10, 0, 10) output3_shape = (0, 1, 2, 3) data3 = Tensor(np.random.random(input3_shape).astype(np.float32)) def comp(out, target_shp): assert out._tuple_shape == target_shp def func(x, shp): return F.reshape(x, shp) cases = [ [data1, output1_shape], [data2, output2_shape], [data3, output3_shape], ] def test(func, inp, comp, target_shp): out = func(inp, target_shp) comp(out, target_shp) if is_trace: for symbolic in [False, True]: for inp, target_shp in cases: func_traced = trace(symbolic=symbolic)(func) test(func_traced, inp, comp, target_shp) test(func_traced, inp, comp, target_shp) test(func_traced, inp, comp, target_shp) else: for inp, target_shp in cases: test(func, inp, comp, target_shp) @pytest.mark.parametrize("is_varnode", [True, False]) def test_reshape_shape_inference(is_varnode): if is_varnode: network = Network() saved_symbolic_shape = set_symbolic_shape(False) else: network = None x_shape_known = make_tensor([1, 2, 3, 4], network) x_shape_unknown = F.broadcast_to( make_tensor([1.0], network), shape=make_tensor([1, 1, 1, 1], network).sum() ) tshp_unknown = astensor1d( (make_tensor([2], network), make_tensor([2], network)), x_shape_known ) tshp_known = astensor1d((2, 2), x_shape_known) tshp_known_unspec = astensor1d((2, -1), x_shape_known) def check_shape(output, target): source = output.shape if isinstance(source, Tensor): source = source.numpy() np.testing.assert_equal(source, target.shape) def func(x, target_shape): return x.reshape(target_shape) cases = [ {"input": [x_shape_known, tshp_unknown], "output": [np.zeros((2, 2)),]}, {"input": [x_shape_unknown, tshp_unknown], "output": [np.zeros((2, 2)),]}, {"input": [x_shape_known, tshp_known], "output": [np.zeros((2, 2)),]}, {"input": [x_shape_known, tshp_known_unspec], "output": [np.zeros((2, 2)),]}, {"input": [x_shape_unknown, tshp_known], "output": [np.zeros((2, 2)),]}, {"input": [x_shape_unknown, tshp_known_unspec], "output": [np.zeros((2, 2)),]}, ] opr_test(cases, func, compare_fn=check_shape, test_trace=True, network=network) if is_varnode: set_symbolic_shape(saved_symbolic_shape) @pytest.mark.parametrize("is_varnode", [True, False]) def test_squeeze(is_varnode): if is_varnode: network = Network() saved_symbolic_shape = set_symbolic_shape(False) else: network = None x = Tensor(np.array([1, 2], dtype=np.int32).reshape(1, 1, 2, 1)) y = F.squeeze(x, -1) np.testing.assert_equal(y.numpy(), np.array([[[1, 2]]]).astype(np.int32)) x = np.arange(6, dtype="float32").reshape(1, 2, 3, 1) xx = make_tensor(x, network) for axis in [None, 3, -4, (3, -4)]: y = np.squeeze(x, axis) yy = F.squeeze(xx, axis) np.testing.assert_equal(y, yy.numpy()) if is_varnode: set_symbolic_shape(saved_symbolic_shape) @pytest.mark.parametrize("is_varnode", [True, False]) def test_expand_dims(is_varnode): if is_varnode: network = Network() else: network = None x = Tensor(np.arange(1, 7, dtype=np.int32).reshape(2, 3)) y = F.expand_dims(x, -1) np.testing.assert_equal( y.numpy(), np.array([[[1], [2], [3]], [[4], [5], [6]]]).astype(np.int32) ) x = np.arange(6, dtype="float32").reshape(2, 3) xx = make_tensor(x, network) for axis in [2, -3, (3, -4), (1, -4)]: y = np.expand_dims(x, axis) yy = F.expand_dims(xx, axis) np.testing.assert_equal(y, yy.numpy()) def test_expand_dims_for_scalar(): x = np.array(1, dtype="float32") xx = make_tensor(x, None) for axis in [0, -1, (0, 1), (-1, -2), (0, -1)]: y = np.expand_dims(x, axis) yy = F.expand_dims(xx, axis) np.testing.assert_equal(y, yy.numpy()) for axis in [1, -2, (1, 2), (-2, -3)]: np.testing.assert_raises(np.AxisError, np.expand_dims, x, axis) np.testing.assert_raises(RuntimeError, F.expand_dims, xx, axis) @pytest.mark.parametrize("is_varnode", [True, False]) def test_elemwise_dtype_promotion(is_varnode): if is_varnode: network = Network() else: network = None x = np.random.rand(2, 3).astype("float32") y = np.random.rand(1, 3).astype("float16") xx = make_tensor(x, network) yy = make_tensor(y, network) z = xx * yy np.testing.assert_equal(z.numpy(), x * y) z = xx + y np.testing.assert_equal(z.numpy(), x + y) z = x - yy np.testing.assert_equal(z.numpy(), x - y) @pytest.mark.parametrize("is_varnode", [True, False]) def test_linspace(is_varnode): if is_varnode: network = Network() else: network = None cases = [ {"input": [1, 9, 9]}, {"input": [3, 10, 8]}, ] opr_test( cases, F.linspace, ref_fn=lambda start, end, step: np.linspace(start, end, step, dtype=np.float32), network=network, ) cases = [ {"input": [9, 1, 9]}, {"input": [10, 3, 8]}, ] opr_test( cases, F.linspace, ref_fn=lambda start, end, step: np.linspace(start, end, step, dtype=np.float32), network=network, ) cases = [ {"input": [1, make_tensor(9, network), 9]}, {"input": [make_tensor(1, network), 9, make_tensor(9, network)]}, ] opr_test( cases, F.linspace, ref_fn=lambda start, end, step: np.linspace(1, 9, 9, dtype=np.float32), network=network, ) @pytest.mark.parametrize("is_varnode", [True, False]) def test_arange(is_varnode): if is_varnode: network = Network() else: network = None cases = [ {"input": [1, 9, 1]}, {"input": [2, 10, 2]}, ] opr_test( cases, F.arange, ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32), network=network, ) cases = [ {"input": [9, 1, -1]}, {"input": [10, 2, -2]}, ] opr_test( cases, F.arange, ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32), network=network, ) cases = [ {"input": [9.3, 1.2, -0.5]}, {"input": [10.3, 2.1, -1.7]}, ] opr_test( cases, F.arange, ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32), network=network, ) @pytest.mark.parametrize("is_varnode", [True, False]) def test_round(is_varnode): if is_varnode: network = Network() else: network = None data1_shape = (15,) data2_shape = (25,) data1 = np.random.random(data1_shape).astype(np.float32) data2 = np.random.random(data2_shape).astype(np.float32) cases = [{"input": data1}, {"input": data2}] opr_test(cases, F.round, ref_fn=np.round, network=network) @pytest.mark.parametrize("is_varnode", [True, False]) def test_flatten(is_varnode): if is_varnode: network = Network() else: network = None inp_shape = (2, 2, 3, 3) x = Tensor(np.arange(36, dtype=np.int32).reshape(inp_shape),) y = F.flatten(x, -2, -1) np.testing.assert_equal( y.numpy(), np.array( [ [[0, 1, 2, 3, 4, 5, 6, 7, 8], [9, 10, 11, 12, 13, 14, 15, 16, 17]], [ [18, 19, 20, 21, 22, 23, 24, 25, 26], [27, 28, 29, 30, 31, 32, 33, 34, 35], ], ] ).astype(np.int32), ) data0_shape = (2, 3, 4, 5) data1_shape = (4, 5, 6, 7) data0 = np.random.random(data0_shape).astype(np.float32) data1 = np.random.random(data1_shape).astype(np.float32) cases = [ {"input": data0, "output": data0.flatten()}, {"input": data1, "output": data1.flatten()}, ] opr_test(cases, F.flatten, network=network) cases = [ {"input": data0, "output": data0.reshape(2, -1)}, {"input": data1, "output": data1.reshape(4, -1)}, ] opr_test(cases, F.flatten, start_axis=1, network=network) cases = [ {"input": data0, "output": data0.reshape(2, 3, -1)}, {"input": data1, "output": data1.reshape(4, 5, -1)}, ] opr_test(cases, F.flatten, start_axis=2, network=network) cases = [ {"input": data0, "output": data0.reshape(2, -1, 5)}, {"input": data1, "output": data1.reshape(4, -1, 7)}, ] opr_test( cases, F.flatten, start_axis=1, end_axis=2, network=network, ) @pytest.mark.parametrize("is_varnode", [True, False]) def test_broadcast(is_varnode): if is_varnode: network = Network() else: network = None input1_shape = (20, 30) output1_shape = (30, 20, 30) data1 = np.random.random(input1_shape).astype(np.float32) input2_shape = (10, 1) output2_shape = (20, 10, 20) data2 = np.random.random(input2_shape).astype(np.float32) input3_shape = (10, 10) output3_shape = (10, 10) data3 = np.random.random(input3_shape).astype(np.float32) cases = [ { "input": [data1, output1_shape], "output": np.broadcast_to(data1, output1_shape), }, { "input": [data2, output2_shape], "output": np.broadcast_to(data2, output2_shape), }, { "input": [data3, output3_shape], "output": np.broadcast_to(data3, output3_shape), }, ] opr_test(cases, F.broadcast_to, network=network) x = F.ones((2, 1, 3)) with pytest.raises(RuntimeError): F.broadcast_to(x, (2, 3, 4)) with pytest.raises(RuntimeError): F.broadcast_to(x, (4, 1, 3)) with pytest.raises(RuntimeError): F.broadcast_to(x, (1, 3)) @pytest.mark.parametrize("is_trace", [True, False]) def test_broadcast_on_empty_tensor(is_trace): input1_shape = (100, 0, 1) output1_shape = (100, 0, 10) data1 = Tensor(np.random.random(input1_shape).astype(np.float32)) input2_shape = (10, 0) output2_shape = (10, 10, 0) data2 = Tensor(np.random.random(input2_shape).astype(np.float32)) input3_shape = (0, 0, 1, 10) output3_shape = (10, 0, 0, 10, 10) data3 = Tensor(np.random.random(input3_shape).astype(np.float32)) def comp(out, target_shp): assert out._tuple_shape == target_shp def func(x, shp): return F.broadcast_to(x, shp) cases = [ [data1, output1_shape], [data2, output2_shape], [data3, output3_shape], ] def test(func, inp, comp, target_shp): out = func(inp, target_shp) comp(out, target_shp) if is_trace: for symbolic in [False, True]: for inp, target_shp in cases: func_traced = trace(symbolic=symbolic)(func) test(func_traced, inp, comp, target_shp) test(func_traced, inp, comp, target_shp) test(func_traced, inp, comp, target_shp) else: for inp, target_shp in cases: test(func, inp, comp, target_shp) @pytest.mark.parametrize( "input_shape, target_shapes", [ ((3,), [(2, 1, 3), (1, 2, 3), (2, 2, 3)]), ((1, 3, 1), [(2, None, 3), (3, None, 3), (1, None, 1)]), ], ) @pytest.mark.parametrize("is_symbolic", [True, False]) def test_broadcast_on_trace(is_symbolic, input_shape, target_shapes): x = F.ones(input_shape) @trace(symbolic=is_symbolic) def broadcast(inp, shape): return F.broadcast_to(inp, shape) for target_shape in target_shapes: if None in target_shape: symbolic_target_shape = tuple( map(lambda x: None if x is None else Tensor(x), target_shape) ) output = broadcast(x, symbolic_target_shape) for i in range(len(target_shape)): if target_shape[i] is not None: assert output._tuple_shape[i] == target_shape[i] else: assert ( output._tuple_shape[i] == x._tuple_shape[i - len(target_shape)] ) else: symbolic_target_shape = Tensor(target_shape) output = broadcast(x, symbolic_target_shape) assert output._tuple_shape == target_shape @pytest.mark.parametrize("is_varnode", [True, False]) def test_utils_astensor1d(is_varnode): if is_varnode: network = Network() else: network = None reference = make_tensor(0, network) # literal x = [1, 2, 3] for dtype in [None, "float32"]: xx = astensor1d(x, reference, dtype=dtype) assert isinstance(xx, type(reference)) np.testing.assert_equal(xx.numpy(), x) # numpy array x = np.asarray([1, 2, 3], dtype="int32") for dtype in [None, "float32"]: xx = astensor1d(x, reference, dtype=dtype) assert isinstance(xx, type(reference)) np.testing.assert_equal(xx.numpy(), x.astype(dtype) if dtype else x) # tensor x = make_tensor([1, 2, 3], network) for dtype in [None, "float32"]: xx = astensor1d(x, reference, dtype=dtype) assert isinstance(xx, type(reference)) np.testing.assert_equal(xx.numpy(), x.numpy()) # mixed x = [1, make_tensor(2, network), 3] for dtype in [None, "float32"]: xx = astensor1d(x, reference, dtype=dtype) assert isinstance(xx, type(reference)) np.testing.assert_equal(xx.numpy(), [1, 2, 3]) # varnode if is_varnode: a = np.array([[1, 2, 3], [4, 5, 6]]).astype("float32") b = np.array([[True, False, True], [False, True, True]]) aa = make_tensor(a, network) bb = make_tensor(b, network) x, y = F.cond_take(bb, aa) for dtype in [None, "float32"]: xx = astensor1d(x, reference, dtype=dtype) assert isinstance(xx, type(reference)) np.testing.assert_equal(get_var_value(xx), get_var_value(x)) def test_device(): x = Tensor([1, 2, 3], dtype="float32") y1 = F.eye(x.shape, dtype="float32") y2 = F.eye(x.shape, dtype="float32", device=None) np.testing.assert_almost_equal(y1.numpy(), y2.numpy()) y3 = F.eye(x.shape, dtype="float32", device="xpux") y4 = F.eye(x.shape, dtype="float32", device=x.device) np.testing.assert_almost_equal(y3.numpy(), y4.numpy()) y5 = F.full((3, 2), 4, device=x.device) y6 = F.full((3, 2), 4, device="xpux") np.testing.assert_almost_equal(y5.numpy(), y6.numpy()) @pytest.mark.parametrize("is_varnode", [True, False]) def test_identity(is_varnode): if is_varnode: network = Network() else: network = None x = make_tensor(np.random.random((5, 10)).astype(np.float32), network) y = F.copy(x) np.testing.assert_equal(y.numpy(), x) def copy_test(dst, src, network): data = np.random.random((2, 3)).astype(np.float32) x = make_tensor(data, device=src, network=network) y = F.copy(x, dst) assert np.allclose(data, y.numpy()) if network is None: z = x.to(dst) assert np.allclose(data, z.numpy()) @pytest.mark.require_ngpu(1) @pytest.mark.parametrize("is_varnode", [True, False]) def test_copy_h2d(is_varnode): if is_varnode: network = Network() else: network = None copy_test("cpu0", "gpu0", network=network) @pytest.mark.require_ngpu(1) @pytest.mark.parametrize("is_varnode", [True, False]) def test_copy_d2h(is_varnode): if is_varnode: network = Network() else: network = None copy_test("gpu0", "cpu0", network=network) @pytest.mark.require_ngpu(2) @pytest.mark.parametrize("is_varnode", [True, False]) def test_copy_d2d(is_varnode): if is_varnode: network = Network() else: network = None copy_test("gpu0", "gpu1", network=network) copy_test("gpu0:0", "gpu0:1", network=network) @pytest.mark.require_ngpu(2) @pytest.mark.parametrize( "shape, device_src, device_dst", [ ((0,), "cpu0", "cpu0"), ((10, 0), "cpu0", "cpu1"), ((2, 0, 3), "cpu0", "gpu0"), ((1, 0, 1, 0), "gpu0", "cpu0"), ((2, 3, 4, 5, 0), "gpu0", "gpu1"), ], ) @pytest.mark.parametrize("is_symbolic", [None, True, False]) def test_copy_empty(shape, device_src, device_dst, is_symbolic): inp = Tensor(np.random.randn(*shape).astype("float32"), device=device_src) def func(inp): return F.copy(inp, device_dst) if is_symbolic is not None: func = trace(symbolic=is_symbolic)(func) for _ in range(3): out = func(inp) assert out.numpy().shape == shape assert out.device == device_dst if is_symbolic is None: break @pytest.mark.parametrize( "shape, repeats, axis", [ ((2,), 2, 0), ((2, 3, 4, 5), 3, 0), ((2, 3, 4, 5), 4, 3), ((2,), 2, None), ((2, 3, 4, 5), 3, None), ((), 1, None), ((), 10, None), ], ) @pytest.mark.parametrize("is_varnode", [True, False]) def test_repeat(shape, repeats, axis, is_varnode): if is_varnode: network = Network() else: network = None def repeat_func(inp): return F.repeat(inp=inp, repeats=repeats, axis=axis) if shape != (): cases = [ {"input": np.random.randn(*shape).astype("float32")}, ] else: cases = [{"input": np.array(1.23)}] opr_test( cases, repeat_func, ref_fn=lambda inp: np.repeat(inp, repeats, axis), network=network, ) @pytest.mark.parametrize( "shape, reps", [ ((2,), (2,)), ((2, 3, 4, 5), (1, 1, 1, 1)), ((2, 3, 4, 5), (1, 2, 3, 4)), # FIXME: tile does not support ndim 7 # ((2, 3, 4, 5), (2, 2, 2, 2, 2, 2, 2)), ], ) @pytest.mark.parametrize("is_varnode", [True]) def test_tile(shape, reps, is_varnode): if is_varnode: network = Network() else: network = None def tile_func(inp): return F.tile(inp=inp, reps=reps) cases = [{"input": np.random.randn(*shape).astype("float32")}] opr_test(cases, tile_func, ref_fn=lambda inp: np.tile(inp, reps), network=network) @pytest.mark.parametrize( "shape, shifts, axis", [ ((2, 3), 0, None), ((2, 3), 1, 0), ((2, 3), 100, 0), ((2, 3), -100, 0), ((2, 3, 4, 5), (-1, 1), (0, 1)), ((2, 3, 4, 5), (-2, 1, 2), (1, 2, 3)), ], ) @pytest.mark.parametrize("is_varnode", [True, False]) def test_roll(shape, shifts, axis, is_varnode): if is_varnode: network = Network() else: network = None x = Tensor([[1, 2], [3, 4], [5, 6]], np.int32) y = F.roll(x, 1, -1) np.testing.assert_equal( y.numpy(), np.array([[2, 1], [4, 3], [6, 5]]).astype(np.int32) ) inp = np.random.randn(*shape).astype("float32") def func(inp): return F.roll(inp, shifts, axis) cases = [ {"input": inp}, ] opr_test( cases, func, ref_fn=lambda inp: np.roll(inp, shifts, axis), network=network ) @pytest.mark.parametrize( "shape, shifts, axis", [((10, 0), 5, 1), ((10, 0), -10, 1),], ) @pytest.mark.parametrize("is_symbolic", [None, True, False]) def test_roll_empty_tensor(shape, shifts, axis, is_symbolic): inp = Tensor(np.random.randn(*shape).astype("float32")) def func(inp): return F.roll(inp, shifts, axis) if is_symbolic is not None: func = trace(symbolic=is_symbolic)(func) out_ref = np.roll(inp.numpy(), shifts, axis) for _ in range(3): out = F.roll(inp, shifts, axis) np.testing.assert_equal(out.numpy(), out_ref) if is_symbolic is None: break def test_polar(): def polar(abs, angle): return F.polar(abs, angle) def numpy_polar(abs, angle): return abs * np.cos(angle) + abs * np.sin(angle) * 1j cases = [{"input": [np.random.random((2, 3, 4)), np.random.random((2, 3, 4))]}] # complex can not be trace output opr_test(cases, polar, ref_fn=numpy_polar, test_trace=False) def test_create_complex(): real = Tensor(np.arange(0, 6).reshape((1, 2, 3)).astype("float32")) imag = Tensor(np.arange(0, 6).reshape((1, 2, 3)).astype("float32")) complex = create_complex(real, imag) np.testing.assert_allclose(complex.numpy(), real.numpy() + imag.numpy() * 1j)