/** * \file imperative/python/src/tensor.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ #include "megbrain/common.h" #include "megbrain/dtype.h" #include "megbrain/imperative/ops/autogen.h" #include "megbrain/imperative/ops/backward_graph.h" #include "megbrain/imperative/ops/utility.h" #include "megbrain/imperative/profiler.h" #include "megbrain/imperative/transformations/dim_expansion.h" #include "megbrain/imperative/transformations/dtype_promote.h" #include "megbrain/imperative/transformations/eval.h" #include "megbrain/imperative/transformations/lazy.h" #include "megbrain/imperative/transformations/scalar.h" #include "megbrain/imperative/transformations/symbol.h" #include "megbrain/imperative/transformations/trace.h" #include "megbrain/imperative/utils/map.h" #include "megbrain/opr/io.h" #include "megbrain/plugin/profiler.h" #include "megbrain/utils/stats.h" #include "./common.h" #include "./grad.h" #include "./graph_rt.h" #include "./helper.h" #include "./module_trace.h" #include "./numpy_dtypes.h" #include "./tensor.h" #include "./tensor_utils.h" #include "./transformation.h" #include #include #include #include #include #include #include #include #include #include "../../src/impl/mgb_cg_impl.h" namespace py = pybind11; namespace views = ranges::views; namespace mgb::imperative::python { namespace { WeakKeyMap module_trace_info_map; struct SymbolVarContext { TransformationContext context; std::shared_ptr symbol_tsf; std::shared_ptr scalar_tsf; std::shared_ptr dtype_promote_tsf; std::shared_ptr dim_expansion_tsf; SymbolVarContext(cg::ComputingGraph* graph) { symbol_tsf = std::make_shared(graph); scalar_tsf = std::make_shared(); dtype_promote_tsf = std::make_shared(); dim_expansion_tsf = std::make_shared(); Transformation::swap_context(context); } void init() { symbol_tsf->register_at(Transformation::top()); scalar_tsf->register_at(Transformation::top()); dtype_promote_tsf->register_at(Transformation::top()); dim_expansion_tsf->register_at(Transformation::top()); } ValueRef symvar2val(py::handle py_symbol_var) { auto* symbol_var = py_symbol_var.cast(); ValueRef value = symbol_tsf->value_type().make(symbol_var->m_node); if (symbol_var->is_scalar) { value = scalar_tsf->value_type().make(value); } return value; } py::object val2symvar(py::handle typeobj, ValueRef value) { bool is_scalar = false; if (auto* scalar_value = value.as(scalar_tsf->value_type())) { value = scalar_value->value(); is_scalar = true; } auto* node = value.cast(symbol_tsf->value_type()).node(); auto py_symbol_var = typeobj(pybind11::cast(node, pybind11::return_value_policy::automatic)); py_symbol_var.cast()->is_scalar = is_scalar; return py_symbol_var; } ~SymbolVarContext() { Transformation::swap_context(context); } }; } // namespace interpreter::Interpreter::Channel* interpreter_for_py = nullptr; PyTypeObject* py_tensor_type = nullptr; pybind11::handle py_device_type = nullptr; PyObject* cpp_use_symbolic_shape; #define REGISTE_APPLY_FUNC(mode) \ void set_##mode(py::object pyf) { mode = pyf.ptr(); } REGISTE_APPLY_FUNC(cpp_use_symbolic_shape) #undef REGISTE_APPLY_FUNC PyArray_Descr* _dtype_promotion(PyObject* const* args, size_t nargs); CompNode _get_device(PyObject* const* args, size_t nargs); PyObject* py_apply( PyObject* self, PyObject* const* args, size_t nargs /* , PyObject* kwnames */) { try { // if (kwnames && PyTuple_GET_SIZE(kwnames)) { // PyErr_SetString(PyExc_TypeError, "keyword argument not allowed"); // return nullptr; // } if (nargs < 2) { PyErr_SetString( PyExc_TypeError, "py_apply expects one Op and at least one tensor " "as argument"); return nullptr; } auto* py_op = args[0]; ++args; --nargs; auto op = py::handle(py_op).cast>(); SmallVector tensors(nargs); SmallVector is_symbol_var(nargs, false); ComputingGraph* cg = nullptr; for (size_t i = 0; i < nargs; ++i) { if ((!TensorWrapper::try_cast(args[i])) && py::isinstance(py::handle(args[i]))) { is_symbol_var[i] = true; ComputingGraph* cur_cg = py::handle(args[i]).cast()->m_node->owner_graph(); if (cg == nullptr) { cg = cur_cg; } else { mgb_assert(cg == cur_cg); } } } mgb::CompNode target_cn; mgb::DType target_dtype; auto convert_pyinput_to_tensor = [&](size_t i) -> ValueRef { if (!target_dtype.valid()) { target_dtype = npy::dtype_np2mgb_descr(_dtype_promotion(args, nargs)); target_cn = _get_device(args, nargs); } HostTensorND ht(target_cn); ht = npy::np2tensor(args[i], npy::Meth::copy_into(&ht), target_dtype); if (PyArray_Check(args[i]) || PyList_Check(args[i])) { // non scaler // py_tuple is not allowed here because of tracing return imperative::apply( CreateTensor(CreateTensor::Const, target_cn, ht.layout()), HostStorage::make(ht.storage()))[0]; } else { // scaler return imperative::apply( CreateTensor(CreateTensor::Const, target_cn, target_dtype, {}), HostStorage::make(ht.storage()))[0]; } }; if (cg != nullptr) { // swap to a special context to reuse scalar handle size_t symbol_var_idx = 8; SymbolVarContext context(cg); context.init(); for (size_t i = 0; i < nargs; ++i) { if (is_symbol_var[i]) { symbol_var_idx = i; tensors[i] = context.symvar2val(args[i]); } else if ( DTypePromoteCfg::convert_input_enabled && op->same_type()) { tensors[i] = convert_pyinput_to_tensor(i); } else { PyErr_SetString( PyExc_TypeError, "py_apply expects tensor as inputs"); return nullptr; } } auto outputs = imperative::apply(*op, tensors); auto ret = pybind11::tuple(outputs.size()); auto typeobj = py::handle(args[symbol_var_idx]).get_type(); for (size_t i = 0; i < outputs.size(); ++i) { ret[i] = context.val2symvar(typeobj, outputs[i]); } return ret.release().ptr(); } for (size_t i = 0; i < nargs; ++i) { if (TensorWrapper* tw = TensorWrapper::try_cast(args[i])) { tensors[i] = tw->m_tensor->data(); } else if ( DTypePromoteCfg::convert_input_enabled && op->same_type()) { tensors[i] = convert_pyinput_to_tensor(i); } else { PyErr_SetString(PyExc_TypeError, "py_apply expects tensor as inputs"); return nullptr; } } auto outputs = [&] { return imperative::apply(*op, tensors); }(); size_t nout = outputs.size(); auto ret = py::tuple(nout); for (size_t i = 0; i < nout; ++i) { ret[i] = TensorWrapper::make(py_tensor_type, std::move(outputs[i])); } return ret.release().ptr(); } PYEXT17_TRANSLATE_EXC_RET(nullptr) } namespace { template py::handle py_type() { if constexpr (std::is_same_v) { return (PyObject*)&PyLong_Type; } else if constexpr (std::is_same_v) { return (PyObject*)&PyFloat_Type; } else if constexpr (std::is_same_v) { return (PyObject*)&PyTuple_Type; } else if constexpr (std::is_same_v) { return (PyObject*)&PyList_Type; } else { static_assert(std::is_same_v); } } template auto scalar2storage(T val, CompNode cn, DType dtype) { using max_ctype_t = DTypeScalar::max_ctype; DTypeScalar scalar(dtype); scalar.set_retain_dtype(val); HostTensorStorage storage(cn); auto* raw_ptr = reinterpret_cast(new max_ctype_t()); std::shared_ptr raw_storage = { raw_ptr, [](dt_byte* ptr) { delete reinterpret_cast(ptr); }}; storage.only_reset_raw_storage(cn, dtype.size(), raw_storage, 0); std::memcpy(storage.ptr(), scalar.storage(), dtype.size()); return HostStorage::make(std::move(storage)); } template auto vec2storage(Span vec, CompNode cn, DType dtype) { mgb_assert(vec.size() <= MEGDNN_MAX_NDIM); // TODO: use storage cache and modify ConstTensorCache to return (Host, Device) auto* raw_ptr = new ctype[MEGDNN_MAX_NDIM]; for (size_t i = 0; i < vec.size(); ++i) { raw_ptr[i] = vec[i].get_cast(); } mgb_assert(sizeof(ctype) == dtype.size()); std::shared_ptr raw_storage = { reinterpret_cast(raw_ptr), [](dt_byte* ptr) { delete[] reinterpret_cast(ptr); }}; HostTensorStorage storage(cn); storage.only_reset_raw_storage(cn, sizeof(ctype) * vec.size(), raw_storage, 0); return HostStorage::make(std::move(storage)); } struct HostTensorArgs { ValueShape shape; DType dtype; HostStorage::ref_t storage; HostTensorND as_tensor_nd() const { HostTensorND ret(CompNode::default_cpu(), shape.as_tensor_shape(), dtype); ret.only_reset_raw_storage(*storage); return ret; } }; template bool pyseq2hval(seq_type obj, CompNode cn, DType dtype, HostTensorArgs& ret) { auto size = obj.size(); if (size > MEGDNN_MAX_NDIM) { return false; } ctype items[size]; for (size_t i = 0; i < size; ++i) { py::handle item = obj[i]; if (item.get_type().is(py_type())) { items[i] = (ctype)(dt_int32)item.template cast(); } else if (item.get_type().is(py_type())) { items[i] = (ctype)(dt_float32)item.template cast(); } else { return false; } } mgb_assert(sizeof(ctype) == dtype.size()); auto* raw_ptr = new ctype[size]; std::shared_ptr raw_storage = { reinterpret_cast(raw_ptr), [](dt_byte* ptr) { delete[] reinterpret_cast(ptr); }}; HostTensorStorage storage(cn); storage.only_reset_raw_storage(cn, sizeof(ctype) * size, raw_storage, 0); std::memcpy(storage.ptr(), items, sizeof(ctype) * size); ret.dtype = dtype; ret.shape = {size}; ret.storage = HostStorage::make(std::move(storage)); return true; } template bool pyseq2hval(seq_type obj, CompNode cn, HostTensorArgs& ret) { auto size = obj.size(); if (size > MEGDNN_MAX_NDIM) { return false; } DTypeScalar items[size]; DType dtype; for (size_t i = 0; i < size; ++i) { auto&& item = obj[i]; if (item.get_type().is(py_type())) { items[i] = (dt_int32)item.template cast(); if (!dtype.valid()) { dtype = dtype::Int32(); } else if (dtype != dtype::Int32() && dtype != dtype::Float32()) { return false; } } else if (item.get_type().is(py_type())) { items[i] = (dt_float32)item.template cast(); if (!dtype.valid()) { dtype = dtype::Float32(); } else if (dtype == dtype::Int32()) { dtype = dtype::Float32(); } else if (dtype != dtype::Float32()) { return false; } } else { return false; } } if (!dtype.valid()) { dtype = dtype::Float32(); } ret.dtype = dtype; ret.shape = {size}; if (dtype == dtype::Int32()) { ret.storage = vec2storage({items, size}, cn, dtype); } else if (dtype == dtype::Float32()) { ret.storage = vec2storage({items, size}, cn, dtype); } else { mgb_assert(false); } return true; } template bool pyseq2hval(seq_type obj, CompNode cn, DType dtype, HostTensorArgs& ret) { if (dtype == dtype::Int32()) { return pyseq2hval(obj, cn, dtype, ret); } else if (dtype == dtype::Float32()) { return pyseq2hval(obj, cn, dtype, ret); } else if (!dtype.valid()) { return pyseq2hval(obj, cn, ret); } else { return false; } } bool pyarr2hval(py::array obj, CompNode cn, DType dtype, HostTensorArgs& ret) { auto data = obj.cast(); auto strides = data.strides(); bool need_squeeze = false; for (size_t i = 0; i < data.ndim(); ++i) { if (strides[i] == 0) { need_squeeze = true; break; } } if (need_squeeze) { std::vector shape; for (size_t i = 0; i < data.ndim(); ++i) { shape.push_back(data.shape(i)); } data = data.squeeze(); data.resize(shape); } HostTensorND retnd(cn); retnd = npy::np2tensor(data.ptr(), npy::Meth::copy_into(&retnd), dtype); if (!dtype.valid()) { dtype = retnd.dtype(); } mgb_assert( retnd.layout().is_empty() || retnd.layout().is_contiguous(), "host value should be continuous"); for (size_t i = 0; i < data.ndim(); ++i) { ret.shape[ret.shape.ndim++] = data.shape(i); } ret.dtype = dtype; ret.storage = HostStorage::make(retnd.storage()); return true; } bool pyint2hval(py::int_ obj, CompNode cn, DType dtype, HostTensorArgs& ret) { if (!dtype.valid()) { dtype = dtype::Int32(); } ret.dtype = dtype; ret.storage = scalar2storage((dt_int32)obj, cn, dtype); return true; } bool pyfloat2hval(py::float_ obj, CompNode cn, DType dtype, HostTensorArgs& ret) { if (!dtype.valid()) { dtype = dtype::Float32(); } ret.dtype = dtype; ret.storage = scalar2storage((dt_float32)obj, cn, dtype); return true; } HostTensorArgs pyobj2hval(py::object obj, CompNode cn, DType dtype) { HostTensorArgs ret; bool success = false; // check order: float -> int -> tuple(int -> float) -> list(int -> float) // only handle `exact` pytype, isinstance also accepts subtype // for example, isinstance(True, int) == True if (obj.get_type().is(py_type())) { success = pyfloat2hval(py::float_(obj), cn, dtype, ret); } else if (obj.get_type().is(py_type())) { // py::bool_ is py::int_ success = pyint2hval(py::int_(obj), cn, dtype, ret); } else if (obj.get_type().is(py_type())) { success = pyseq2hval(py::tuple(obj), cn, dtype, ret); } else if (obj.get_type().is(py_type())) { success = pyseq2hval(py::list(obj), cn, dtype, ret); } else if (obj.is_none()) { obj = py::list(0); } if (!success) { success = pyarr2hval(obj, cn, dtype, ret); } mgb_assert(success); return ret; } struct PyArgDesc { const char* name; py::object (*default_value)(); }; struct PyArgDescs { std::vector items; ssize_t (*name2idx)(const char* name); }; py::tuple parse_args(py::tuple args, const PyArgDescs& descs) { size_t nr_args = args.size(); size_t nr_items = descs.items.size(); mgb_assert(nr_args <= nr_items, "too many args"); if (nr_args == nr_items) { return args; } py::tuple ret(nr_items); for (size_t i = 0; i < nr_args; ++i) { ret[i] = args[i]; } for (size_t i = nr_args; i < nr_items; ++i) { ret[i] = descs.items[i].default_value(); } return ret; } py::tuple parse_args_and_kwargs( py::tuple args, py::dict kwargs, const PyArgDescs& descs) { size_t nr_args = args.size(); size_t nr_kwargs = kwargs.size(); size_t nr_items = descs.items.size(); mgb_assert(nr_args + nr_kwargs <= nr_items, "too many args"); if (nr_args == nr_items) { return args; } py::tuple ret(nr_items); for (size_t i = 0; i < nr_args; ++i) { ret[i] = args[i]; } bool has_value[nr_items - nr_args]; for (size_t i = nr_args; i < nr_items; ++i) { has_value[i - nr_args] = false; } for (auto&& [k, v] : kwargs) { auto key = py::str(k).cast(); ssize_t index = descs.name2idx(key.c_str()); mgb_assert(index >= nr_args); ret[index] = v; has_value[index - nr_args] = true; } for (size_t i = nr_args; i < nr_items; ++i) { if (!has_value[i - nr_args]) { ret[i] = descs.items[i].default_value(); } } return ret; } CompNode as_comp_node(const std::string& name) { thread_local struct { std::string name; CompNode cn; } cached; if (cached.name != name) { cached.name = name; cached.cn = CompNode::load(name); } return cached.cn; } CompNode as_comp_node(py::object py_device) { std::optional device_name; if (py_device.is_none() || py::str::check_(py_device)) { auto cls = py::handle(reinterpret_cast(py_tensor_type)); auto dmap_callback = cls.attr("dmap_callback"); std::string name; if (dmap_callback.is_none() && py_device.is_none()) { name = get_default_device(); } else { if (py_device.is_none()) { py_device = py::str(get_default_device()); } if (!dmap_callback.is_none()) { py_device = dmap_callback(py_device); } name = py::str(py_device).cast(); } return as_comp_node(name); } else { if (py::isinstance(py_device, py_device_type)) { py_device = py_device.attr("_cn"); } mgb_assert(py::isinstance(py_device, py_comp_node_type)); return py_device.cast(); } } template bool compare_cstr(const char* cstr) { return (((*cstr++) == Chars) && ...) && *cstr == '\0'; } ssize_t name2idx(const char* name) { const char* ch = name; // TODO: trie // clang-format off switch (*ch++) { case 'd': switch (*ch++) { // data case 'a': return compare_cstr<'t', 'a'>(ch) ? 0 : -1; // dtype case 't': return compare_cstr<'y', 'p', 'e'>(ch) ? 1 : -1; // device case 'e': return compare_cstr<'v', 'i', 'c', 'e'>(ch) ? 2 : -1; } case 'i': // is_const return compare_cstr<'s', '_', 'c', 'o', 'n', 's', 't'>(ch) ? 3 : -1; case 'n': switch (*ch++) { // no_cache case 'o': return compare_cstr<'_', 'c', 'a', 'c', 'h', 'e'>(ch) ? 4 : -1; // name case 'a': return compare_cstr<'m', 'e'>(ch) ? 5 : -1; } } // clang-format on return -1; } } // namespace TensorWrapper::TensorWrapper(PyObject* args, PyObject* kwargs) { static PyArgDescs descs = { { {"data", []() -> py::object { return py::none(); }}, {"dtype", []() -> py::object { return py::none(); }}, {"device", []() -> py::object { return py::none(); }}, {"is_const", []() -> py::object { return py::bool_(false); }}, {"no_cache", []() -> py::object { return py::bool_(false); }}, {"name", []() -> py::object { return py::none(); }}, }, name2idx}; py::detail::loader_life_support life_sup; // FIXME!!!required to cast DType auto tup = py::reinterpret_borrow(args); if (kwargs) { tup = parse_args_and_kwargs( tup, py::reinterpret_borrow(kwargs), descs); } else { tup = parse_args(tup, descs); } mgb_assert(tup.size() == 6); if (auto* t = try_cast(tup[0].ptr())) { m_tensor = t->m_tensor->copy(); } else { auto data = tup[0]; DType dtype = tup[1].cast(); bool is_const = tup[3].cast(); bool no_cache = tup[4].cast(); std::string name; if (!tup[5].is_none()) { name = tup[5].cast(); } CompNode cn = as_comp_node(tup[2]); { CreateTensor::Kind kind = is_const ? CreateTensor::Const : no_cache ? CreateTensor::Unique : CreateTensor::Common; auto&& hval = pyobj2hval(data, cn, dtype); auto val = imperative::apply( CreateTensor(kind, cn, hval.dtype, hval.shape), hval.storage)[0]; m_tensor.emplace(val); } if (!name.empty()) { m_tensor->reset(imperative::apply(RenameValue(name), m_tensor->data())[0]); } } mgb_assert(m_tensor->data()); } PyObject* TensorWrapper::module_trace_info() { if (auto module_trace_info = module_trace_info_map.try_get(m_tensor->data())) { if (module_trace_info->ptr()) { return module_trace_info->inc_ref().ptr(); } } PyErr_SetString( PyExc_AttributeError, "Has no attribute named \'_NodeMixin__node\', please " "set it first"); return nullptr; } void TensorWrapper::set_module_trace_info(PyObject* obj) { // TODO: erase when obj == nullptr module_trace_info_map[m_tensor->data()] = py::reinterpret_borrow(obj); } void TensorWrapper::_set_name(PyObject* dest) { auto py_dest = py::reinterpret_borrow(dest); auto name = py_dest.cast(); m_tensor->set_name(name); } PyObject* TensorWrapper::_detail() { return py::str(m_tensor->data().unwrap().to_string()).release().ptr(); } void TensorWrapper::_watch() { m_tensor->data().watch(); } PyObject* TensorWrapper::shape() { auto shape = m_tensor->shape(); if (!shape) { Py_RETURN_NONE; } py::tuple ret(shape->ndim); for (size_t i = 0; i < shape->ndim; ++i) { ret[i] = shape->at(i); } return ret.release().ptr(); } PyObject* TensorWrapper::dtype() { return py::cast(m_tensor->dtype()).release().ptr(); } PyObject* TensorWrapper::device() { return py::cast(m_tensor->comp_node()).release().ptr(); } PyObject* TensorWrapper::numpy() { auto hv = m_tensor->numpy(); if (!hv) { PyErr_SetString(PyExc_ValueError, "tensor invalid"); return nullptr; } auto arr = py::reinterpret_steal( npy::ndarray_from_tensor(hv->as_nd(true), npy::ShareType::TRY_SHARE)); if (hv->shape().is_scalar()) { mgb_assert(PyArray_Check(arr.ptr())); return PyArray_Squeeze(reinterpret_cast(arr.ptr())); } return arr.release().ptr(); } void TensorWrapper::reset(PyObject* tensor) { TensorWrapper* t = TensorWrapper::try_cast(tensor); if (!t) { throw py::type_error("expect Tensor"); } m_tensor->reset(t->m_tensor->data()); } PyObject* TensorWrapper::detach() { auto detached = imperative::apply(DetachGrad(), m_tensor->data())[0]; return TensorWrapper::make(py_tensor_type, detached).release().ptr(); } PyObject* TensorWrapper::_dev_tensor() { auto dv = m_tensor->data().dev_tensor(); // TODO: handle scalar return py::cast(dv->as_nd(true)).release().ptr(); } void TensorWrapper::_drop() { imperative::apply(DTRCommand(DTRCommand::Drop), m_tensor->data()); } PyObject* TensorWrapper::isscalar() { if (m_tensor->is_scalar()) { Py_RETURN_TRUE; } else { Py_RETURN_FALSE; } } struct TensorWeakRef { ValueWeakRef data; TensorWeakRef(const TensorWrapper& tw) : data(tw.m_tensor->data()) {} py::object operator()() { if (auto p = data.lock()) { return TensorWrapper::make(py_tensor_type, p); } return py::none(); } }; #ifdef METH_FASTCALL #define MGE_PY_INTERFACE(NAME, FUNC) \ { #NAME, (PyCFunction)FUNC, METH_FASTCALL, nullptr } #else #define WRAP_FUNC_PY35(FUNC) \ PyObject* py35_##FUNC(PyObject* self, PyObject* args) { \ auto* arr = &PyTuple_GET_ITEM(args, 0); \ auto size = PyTuple_GET_SIZE(args); \ return FUNC(self, arr, size); \ } WRAP_FUNC_PY35(py_apply); WRAP_FUNC_PY35(dtype_promotion); WRAP_FUNC_PY35(get_device); WRAP_FUNC_PY35(make_shape_tuple); WRAP_FUNC_PY35(getitem_cpp); WRAP_FUNC_PY35(setitem_cpp); WRAP_FUNC_PY35(split_cpp); WRAP_FUNC_PY35(expand_dims_cpp); WRAP_FUNC_PY35(squeeze_cpp); WRAP_FUNC_PY35(transpose_cpp); WRAP_FUNC_PY35(broadcast_cpp); WRAP_FUNC_PY35(reshape_cpp); WRAP_FUNC_PY35(adaptive_pool2d_cpp); WRAP_FUNC_PY35(Const); WRAP_FUNC_PY35(astype_cpp); WRAP_FUNC_PY35(matmul_cpp); WRAP_FUNC_PY35(batched_matmul_cpp); WRAP_FUNC_PY35(convert_single_value_cpp); WRAP_FUNC_PY35(convert_inputs_cpp); WRAP_FUNC_PY35(astensor1d_cpp); WRAP_FUNC_PY35(pixel_shuffle_cpp); #undef WRAP_FUNC_PY35 #define MGE_PY_INTERFACE(NAME, FUNC) \ { #NAME, (PyCFunction)py35_##FUNC, METH_VARARGS, nullptr } #endif void init_tensor(py::module m) { imperative::Tensor::static_initialize(); static auto& transformations = TransformationManager::get_instance(); using Segment = TransformationManager::Segment; using Channel = interpreter::Interpreter::Channel; auto* channel = imperative::ResourceManager::create_global>( interpreter::Interpreter::inst().create_channel()) ->get(); interpreter_for_py = channel; MGB_MARK_USED_VAR( transformations .register_at( std::make_shared( std::shared_ptr(channel, [](Channel*) {}))) .release()); MGB_MARK_USED_VAR(transformations .register_at( std::make_shared()) .release()); MGB_MARK_USED_VAR(transformations .register_at( std::make_shared()) .release()); MGB_MARK_USED_VAR(transformations .register_at( std::make_shared()) .release()); static py::exception py_async_error( m, "AsyncError", PyExc_RuntimeError); py::register_exception_translator([](std::exception_ptr p) { try { if (p) std::rethrow_exception(p); } catch (const interpreter::AsyncError& e) { pyext17::pybind11_translate_exception(e.nested_ptr()); if (PyErr_Occurred()) { PyObject *exc, *val, *tb; PyErr_Fetch(&exc, &val, &tb); PyErr_NormalizeException(&exc, &val, &tb); if (tb) { PyException_SetTraceback(val, tb); } auto val2 = py_async_error.py::object::operator()( "An async error is reported. See above for the actual cause." " Hint: This is where it is reported, not where it happened." " You may call `megengine.config.async_level = 0 " "to get better error reporting."); PyException_SetCause( val2.ptr(), val); // PyException_SetCause steals reference Py_XDECREF(exc); Py_XDECREF(tb); PyErr_Restore( py_async_error.inc_ref().ptr(), val2.release().ptr(), nullptr); } else { py_async_error("Unkown async error"); } } }); auto* tensor_type = TensorWrapper::wrap_t::type() .def<&TensorWrapper::numpy>("numpy") .def_getset<&TensorWrapper::shape>("shape") .def_getset<&TensorWrapper::dtype>("dtype") .def_getset<&TensorWrapper::device>("device") .def<&TensorWrapper::reset>("_reset") .def<&TensorWrapper::isscalar>("_isscalar") .def<&TensorWrapper::detach>("detach") // TODO: remove this .def<&TensorWrapper::_dev_tensor>("_dev_tensor") .def<&TensorWrapper::_drop>("_drop") .def<&TensorWrapper::_detail>("_detail") .def<&TensorWrapper::_set_name>("_set_name") .def<&TensorWrapper::_watch>("_watch") .def_getset< &TensorWrapper::module_trace_info, &TensorWrapper::set_module_trace_info>("_NodeMixin__node") .finalize(); if (!tensor_type) throw py::error_already_set(); py::setattr(m, "Tensor", tensor_type); py::class_(m, "TensorWeakRef") .def(py::init()) .def("__call__", &TensorWeakRef::operator()); py::class_>(m, "SymbolVar") .def_property_readonly( "dtype", [](PySymbolVar* v) { return v->m_node->dtype(); }) .def_property( "var", [](PySymbolVar* v) { return v->m_node; }, [](PySymbolVar* s, cg::VarNode* v) { s->m_node = v; }) .def_property_readonly( "device", [](PySymbolVar* v) { return v->m_node->comp_node(); }) .def_property_readonly( "graph", [](PySymbolVar* v) { return v->m_node->owner_graph(); }) .def_property_readonly( "shape", [](PySymbolVar* v) -> const TensorShape* { auto&& mgr = v->m_node->owner_graph()->static_infer_manager(); return mgr.infer_shape_fallible(v->m_node); }) .def("numpy", [](PySymbolVar* v) { auto&& mgr = v->m_node->owner_graph()->static_infer_manager(); auto&& type = mgr.get_infer_type(v->m_node); using InferType = cg::static_infer::InferType; if (!(type.value & (InferType::CONST | InferType::RT_STATIC))) { throw py::value_error("value invalid!"); } auto* val = mgr.infer_value_fallible(v->m_node); if (!val) { throw py::value_error("value invalid!"); } auto np_val = py::cast(*val).attr("numpy")(); return np_val; }) .def("_isscalar", [](PySymbolVar* v) { return v->is_scalar; }) .def(py::init([](cg::VarNode* node) { return std::make_shared(node); }), py::arg() = nullptr); static PyMethodDef method_defs[] = { MGE_PY_INTERFACE(apply, py_apply), MGE_PY_INTERFACE(dtype_promotion, dtype_promotion), MGE_PY_INTERFACE(get_device, get_device), MGE_PY_INTERFACE(make_shape_tuple, make_shape_tuple), MGE_PY_INTERFACE(getitem_cpp, getitem_cpp), MGE_PY_INTERFACE(setitem_cpp, setitem_cpp), MGE_PY_INTERFACE(split_cpp, split_cpp), MGE_PY_INTERFACE(expand_dims_cpp, expand_dims_cpp), MGE_PY_INTERFACE(squeeze_cpp, squeeze_cpp), MGE_PY_INTERFACE(transpose_cpp, transpose_cpp), MGE_PY_INTERFACE(broadcast_cpp, broadcast_cpp), MGE_PY_INTERFACE(reshape_cpp, reshape_cpp), MGE_PY_INTERFACE(adaptive_pool2d_cpp, adaptive_pool2d_cpp), MGE_PY_INTERFACE(Const, Const), MGE_PY_INTERFACE(astype_cpp, astype_cpp), MGE_PY_INTERFACE(matmul_cpp, matmul_cpp), MGE_PY_INTERFACE(batched_matmul_cpp, batched_matmul_cpp), MGE_PY_INTERFACE(convert_single_value_cpp, convert_single_value_cpp), MGE_PY_INTERFACE(convert_inputs_cpp, convert_inputs_cpp), MGE_PY_INTERFACE(astensor1d_cpp, astensor1d_cpp), MGE_PY_INTERFACE(pixel_shuffle_cpp, pixel_shuffle_cpp), {nullptr, nullptr, 0, nullptr}}; for (auto&& def : method_defs) { if (def.ml_meth != nullptr) { auto* func = PyCFunction_NewEx(&def, nullptr, nullptr); if (!func) throw py::error_already_set(); py::setattr(m, def.ml_name, func); } } static constexpr auto sync_py_task_q = [] { py::gil_scoped_release _; py_task_q.wait_all_task_finish(); }; m.def("clear_candidates", [channel]() { channel->clear_candidates(); }); m.def("set_option", [channel](std::string name, size_t value) { channel->set_option(name, value); }); m.def("get_option", [channel](std::string name) { return channel->get_option(name); }); m.def("push_scope", [channel](std::string name) { Transformation::push_scope(name); channel->push_scope(name); }); m.def("pop_scope", [channel](std::string name) { channel->pop_scope(name); Transformation::pop_scope(name); }); m.def("start_profile", [channel](imperative::Profiler::options_t options) { channel->sync(); imperative::Profiler::load_options(std::move(options)); imperative::Profiler::start_profile(); channel->start_profile(); }); m.def("stop_profile", [channel]() -> std::function { channel->stop_profile(); channel->sync(); imperative::Profiler::stop_profile(); auto results = std::make_shared( imperative::Profiler::collect()); return [results = results](std::string basename, std::string format) mutable { imperative::Profiler::dump_profile(basename, format, std::move(*results)); results = nullptr; }; }); m.def("sync", [channel]() { if (channel->check_available()) { channel->sync(); } sync_py_task_q(); }); m.def("full_sync", [channel]() { if (channel->check_available()) { channel->sync(); } CompNode::sync_all(); CompNode::foreach ([](CompNode cn) { auto err = cn.check_async_error(); mgb_assert(!err, "%s", err->what()); }); sync_py_task_q(); }); m.def("close", [channel]() { channel->close(); sync_py_task_q(); }); py::handle grad_key_type = GradKeyWrapper::wrap_t::type() .def<&GradKeyWrapper::attach>("attach") .def<&GradKeyWrapper::is_attached_to>("is_attached_to") .def_getset<&GradKeyWrapper::get_name, &GradKeyWrapper::set_name>( "name") .def<&GradKeyWrapper::enter>("enter") .def<&GradKeyWrapper::exit>("exit") .def<&GradKeyWrapper::suppress>("suppress") .def<&GradKeyWrapper::resume>("resume") .finalize(); if (!grad_key_type) throw py::error_already_set(); py::setattr(m, "GradKey", grad_key_type); m.def("backward", &GradKeyWrapper::backward); m.def("get_backward_closure", &GradKeyWrapper::get_backward_closure); m.def("set_py_tensor_type", [](py::object type_obj) { py_tensor_type = reinterpret_cast(type_obj.inc_ref().ptr()); }); m.def("set_py_device_type", [](py::object type_obj) { py_device_type = type_obj.inc_ref(); }); /** * \brief trace proxy * */ struct Trace { bool symbolic = false; bool no_exec = false; bool capture_as_const = false; bool profile = false; bool record_input_shapes = false; py::function options_visitor; std::shared_ptr tracing; std::shared_ptr compiled; std::shared_ptr lazy_eval; std::pair> profiler; std::optional trace_result; std::function array_comparator; std::unique_ptr> tracing_guard; std::unique_ptr> compiled_guard; std::unique_ptr> lazy_eval_guard; bool compare_value(ValueRef lhs, ValueRef rhs) { auto lvalue = lhs.cast_ref(); auto rvalue = rhs.cast_ref(); if (lvalue->shape() != rvalue->shape()) { return false; } if (lvalue->shape().total_nr_elems() == 1) { return lvalue->item() == rvalue->item(); } HostTensorND lnd = lvalue->as_nd(true); HostTensorND rnd = rvalue->as_nd(true); auto larr = py::reinterpret_steal( npy::ndarray_from_tensor(lnd, npy::ShareType::TRY_SHARE)); auto rarr = py::reinterpret_steal( npy::ndarray_from_tensor(rnd, npy::ShareType::TRY_SHARE)); return array_comparator(larr, rarr); } void enter() { auto& self = *this; if (!self.trace_result) { // untraced self.tracing = std::make_shared( self.capture_as_const, self.record_input_shapes); if (self.symbolic) { self.lazy_eval = std::make_shared(self.no_exec); self.options_visitor(py::cast(&self.lazy_eval->options())); } } else if (!self.compiled) { // traced but not compiled using namespace std::placeholders; self.compiled = std::make_shared( *self.trace_result, self.record_input_shapes); self.compiled->set_value_comparator( std::bind(&Trace::compare_value, this, _1, _2)); self.options_visitor(py::cast(&self.compiled->options())); self.compiled->compile(); } // register transformations if (self.compiled) { if (self.profile) { auto& current_graph = self.compiled->graph(); if (self.profiler.first != self.compiled->graph().id()) { // graph changed self.profiler = std::make_pair( current_graph.id(), std::make_shared(¤t_graph)); } } compiled_guard = transformations.register_at(self.compiled); // start execute because InputCallback depends self.compiled->execute(); } else if (self.tracing) { tracing_guard = transformations.register_at(self.tracing); if (self.lazy_eval) { lazy_eval_guard = transformations.register_at(self.lazy_eval); } } else { mgb_throw(MegBrainError, "invalid state: neither tracing nor compiled"); } } void exit() { auto& self = *this; if (self.tracing) { tracing_guard.reset(); self.trace_result = self.tracing->get_result(); self.tracing.reset(); if (self.lazy_eval) { auto lazy_eval = std::move(self.lazy_eval); lazy_eval_guard.reset(); lazy_eval->check_exception(); } } else if (self.compiled) { compiled_guard.reset(); self.compiled->wait(); } else { mgb_throw(MegBrainError, "invalid state: neither tracing nor compiled"); } } VarNodeArray dump( std::shared_ptr graph, std::vector> inputs, std::vector> outputs, bool prefer_input_names) { auto& self = *this; mgb_assert(self.trace_result); // mark is like "arg_0", "kwarg_xxx", "output_0" ... std::unordered_map mark2var; for (size_t i = 0; i < self.trace_result->vars.size(); ++i) { auto& name = self.trace_result->vars[i].mark; if (!name.empty()) { mark2var[name] = i; } } std::vector> input_vars; std::vector> output_vars; for (auto&& [input_mark, input_name, input_shape] : inputs) { mgb_assert(input_shape.ndim, "input shape invalid"); input_vars.push_back( {mark2var.at(input_mark), input_name, input_shape}); } for (auto&& [output_name, repr] : outputs) { output_vars.push_back({mark2var.at(output_name), repr}); } self.options_visitor(py::cast(&graph->options())); auto vars = self.trace_result->dump( *graph, input_vars, output_vars, prefer_input_names); return vars; } }; py::class_(m, "Trace") .def(py::init<>()) .def_readwrite("record_input_shapes", &Trace::record_input_shapes) .def_readwrite("array_comparator", &Trace::array_comparator) .def_readwrite("profile", &Trace::profile) .def_property_readonly( "options", [](Trace& self) { if (self.compiled) { return &self.compiled->options(); } else { return (ComputingGraph::Options*)nullptr; } }) .def("get_profile", [](Trace& self) -> py::object { if (self.profiler.second && self.compiled) { auto json = self.profiler.second->to_json_full( self.compiled->graph().current_comp_seq()); return py::str(json->to_string()); } else { return py::none(); } }) .def_readwrite("symbolic", &Trace::symbolic) .def_readwrite("capture_as_const", &Trace::capture_as_const) .def_readwrite("no_exec", &Trace::no_exec) .def_readwrite("options_visitor", &Trace::options_visitor) .def("enter", &Trace::enter) .def("exit", &Trace::exit) .def("dump", &Trace::dump) .def("begin_excluded_region", [](Trace& self) { mgb_assert(bool(self.tracing) ^ bool(self.compiled)); if (self.tracing) { self.tracing_guard.reset(); } else if (self.compiled) { self.compiled_guard.reset(); } }) .def("end_excluded_region", [](Trace& self) { mgb_assert(bool(self.tracing) ^ bool(self.compiled)); if (self.tracing) { self.tracing_guard = transformations.register_at(self.tracing); } else if (self.compiled) { self.compiled_guard = transformations.register_at(self.compiled); } }); m.def("reduce_to_scalar", [](py::object op, py::object tensor) -> py::object { auto reduce_to_scalar = [](const OpDef& op, const ValueRef& input) { auto make_scalar_shape = [&](CompNode device) { return imperative::apply( CreateTensor(CreateTensor::Const, device, dtype::Int32(), {0}), HostStorage::make(device))[0]; }; return imperative::apply(op, input, make_scalar_shape(*input.device()))[0]; }; if (py::isinstance(tensor)) { auto* graph = tensor.cast()->m_node->owner_graph(); SymbolVarContext context(graph); context.init(); auto output = reduce_to_scalar( *op.cast>(), context.symvar2val(tensor)); auto typeobj = tensor.get_type(); return context.val2symvar(typeobj, output); } else { auto* tw = TensorWrapper::try_cast(tensor.ptr()); auto output = reduce_to_scalar( *op.cast>(), tw->m_tensor->data()); return TensorWrapper::make(py_tensor_type, output); } }); m.def("name_tensor", [](std::string name, py::object tensor) { auto* tw = TensorWrapper::try_cast(tensor.ptr()); auto output = imperative::apply(TraceMarkVar(name), tw->m_tensor->data())[0]; tw->m_tensor->reset(output); }); m.def("is_grad_attached", [](std::vector tensors) -> bool { SmallVector values(tensors.size()); for (size_t i = 0; i < tensors.size(); ++i) { values[i] = tensors[i].cast().m_tensor->data(); } auto outputs = imperative::apply(GetGradKey(), values); if (outputs[0].is()) { return true; } else { return false; } }); m.def("get_grad_key", [](std::vector tensors) -> py::object { SmallVector values(tensors.size()); for (size_t i = 0; i < tensors.size(); ++i) { values[i] = tensors[i].cast().m_tensor->data(); } auto output = imperative::apply(GetGradKey(), values)[0]; if (!output) { return py::none(); } return py::reinterpret_borrow(GradKeyWrapper::wrap_t::pycast( GradKeyWrapper::get(output.cast()))); }); m.def("set_grad", [](py::function backward_fn, std::vector inputs, std::vector outputs) { GenericFunction generic_backward_fn = [backward_fn](Span output_grads) -> ValueRefList { py::list output_grad_tws; for (auto&& output_grad : output_grads) { if (output_grad) { output_grad_tws.append( TensorWrapper::make(py_tensor_type, output_grad)); } else { output_grad_tws.append(py::none()); } } py::tuple input_grad_tws = backward_fn(*output_grad_tws); ValueRefList input_grads(input_grad_tws.size()); for (size_t i = 0; i < input_grad_tws.size(); ++i) { auto input_grad_tw = input_grad_tws[i]; if (!input_grad_tw.is_none()) { input_grads[i] = py::cast(input_grad_tw).m_tensor->data(); } else { input_grads[i] = {}; } } return input_grads; }; SmallVector values(inputs.size() + outputs.size()); for (size_t i = 0; i < inputs.size(); ++i) { values[i] = inputs[i].cast().m_tensor->data(); } for (size_t i = 0; i < outputs.size(); ++i) { values[i + inputs.size()] = outputs[i].cast().m_tensor->data(); } auto wrapped_output_values = imperative::apply(SetGrad(generic_backward_fn, inputs.size()), values); std::vector wrapped_outputs; mgb_assert(wrapped_output_values.size() == outputs.size()); for (auto&& output_value : wrapped_output_values) { wrapped_outputs.push_back( TensorWrapper::make(py_tensor_type, output_value)); } return wrapped_outputs; }); static py::function module_trace_hook; static auto get_module_trace = [] { static std::shared_ptr module_trace_transformation; if (!module_trace_transformation) { mgb_assert(module_trace_hook); module_trace_transformation = std::make_shared(module_trace_hook); MGB_MARK_USED_VAR(transformations .register_at( module_trace_transformation) .release()); } return module_trace_transformation; }; m.def("set_cpp_use_symbolic_shape", &set_cpp_use_symbolic_shape); m.def("set_module_tracing", [=] { get_module_trace()->enable(); }); m.def("unset_module_tracing", [=] { get_module_trace()->disable(); }); m.def("is_tracing_module", [=] { return get_module_trace()->enabled(); }); m.def("set_module_trace_hook", [](py::function function) { module_trace_hook = function; module_trace_hook.inc_ref(); }); auto atexit = py::module::import("atexit"); atexit.attr("register")(py::cpp_function([]() { module_trace_hook = {}; })); m.def("begin_record_values", [] { Value::begin_record_values(); }); m.def("end_record_values", [] { std::vector> reprs; auto values = Value::end_record_values(); for (auto&& value : values) { reprs.push_back({value.id(), value.to_string()}); } return reprs; }); m.def("print_stats", [] { Stats::print(); }); m.def("reset_stats", [] { Stats::reset(); }); m.def("_get_convert_inputs", []() -> bool { return DTypePromoteCfg::convert_input_enabled; }); m.def("_set_convert_inputs", [](bool flag) -> bool { bool ret = DTypePromoteCfg::convert_input_enabled; DTypePromoteCfg::convert_input_enabled = flag; return ret; }); m.def("_get_amp_dtype_autocast", []() -> bool { return DTypePromoteCfg::amp_dtype_autocast_enabled; }); m.def("_set_amp_dtype_autocast", [](bool flag) -> bool { bool ret = DTypePromoteCfg::amp_dtype_autocast_enabled; DTypePromoteCfg::amp_dtype_autocast_enabled = flag; return ret; }); static auto get_amp_prec_dtype = [](bool is_high) -> std::string { DType& target = is_high ? DTypePromoteCfg::amp_high_prec_dtype : DTypePromoteCfg::amp_low_prec_dtype; mgb_assert(target.category() == DTypeCategory::FLOAT); std::string ret = target.name(); transform(ret.begin(), ret.end(), ret.begin(), ::tolower); return ret; }; static auto set_amp_prec_dtype = [](bool is_high, std::string dtype_name) -> std::string { DType& target = is_high ? DTypePromoteCfg::amp_high_prec_dtype : DTypePromoteCfg::amp_low_prec_dtype; std::string ret = target.name(); if (dtype_name == "float32") { target = dtype::Float32(); } else if (dtype_name == "float16") { target = dtype::Float16(); } else if (dtype_name == "bfloat16") { target = dtype::BFloat16(); } else { mgb_assert( false, "casted type of amp should be float, but you give %s\n", dtype_name.c_str()); } transform(ret.begin(), ret.end(), ret.begin(), ::tolower); return ret; }; m.def("_get_amp_high_prec_dtype", []() -> std::string { return get_amp_prec_dtype(true); }); m.def("_set_amp_high_prec_dtype", [](std::string dtype_name) -> std::string { return set_amp_prec_dtype(true, dtype_name); }); m.def("_get_amp_low_prec_dtype", []() -> std::string { return get_amp_prec_dtype(false); }); m.def("_set_amp_low_prec_dtype", [](std::string dtype_name) -> std::string { return set_amp_prec_dtype(false, dtype_name); }); py::register_exception(m, "TraceError"); } #undef MGE_PY_INTERFACE } // namespace mgb::imperative::python