# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import megengine import megengine.autodiff as ad import megengine.optimizer as optimizer from megengine import Parameter, tensor from megengine.jit import trace from megengine.module import Module class Simple(Module): def __init__(self): super().__init__() self.a = Parameter(1.23, dtype=np.float32) def forward(self, x): x = x * self.a return x def test_sgd_momentum(): net = Simple() optim = optimizer.SGD(net.parameters(), lr=1.0, momentum=0.9) optim.clear_grad() gm = ad.GradManager().register(net.parameters()) data = tensor([2.34]) # do a step of train with gm.record(): loss = net(data) gm.backward(loss) optim.step() np.testing.assert_almost_equal(optim._state[net.a]["momentum_buffer"].numpy(), 2.34) # do a step of infer loss = net(data) np.testing.assert_almost_equal(loss.numpy(), 2.34 * (1.23 - 2.34), 5) np.testing.assert_almost_equal(optim._state[net.a]["momentum_buffer"].numpy(), 2.34) # do a step of train optim.clear_grad() with gm.record(): loss = net(data) gm.backward(loss) optim.step() np.testing.assert_almost_equal(loss.numpy(), 2.34 * (1.23 - 2.34), 5) np.testing.assert_almost_equal( optim._state[net.a]["momentum_buffer"].numpy(), 0.9 * 2.34 + 2.34 ) def test_sgd_momentum_trace(): for symbolic in (True, False): @trace(symbolic=symbolic) def train_func(data, *, model=None, optim=None): optim.zero_grad() with optim.record(): loss = net(data) optim.backward(loss) optim.step() return loss @trace(symbolic=symbolic) def eval_func(data, *, model=None, optim=None): loss = net(data) return loss net = Simple() optim = optimizer.SGD(net.parameters(), lr=1.0, momentum=0.9) data = tensor([2.34]) train_func(data, model=net, optim=optim) np.testing.assert_almost_equal( optim._state[net.a]["momentum_buffer"].numpy(), 2.34 ) # do 3 steps of infer for _ in range(3): loss = eval_func(data) np.testing.assert_almost_equal(loss.numpy(), 2.34 * (1.23 - 2.34), 5) np.testing.assert_almost_equal( optim._state[net.a]["momentum_buffer"].numpy(), 2.34 ) # do a step of train train_func(data, model=net, optim=optim) np.testing.assert_almost_equal(loss.numpy(), 2.34 * (1.23 - 2.34), 5) np.testing.assert_almost_equal( optim._state[net.a]["momentum_buffer"].numpy(), 0.9 * 2.34 + 2.34 )