/** * \file python_module/src/cpp/opr_defs.cpp * * This file is part of MegBrain, a deep learning framework developed by Megvii. * * \copyright Copyright (c) 2014-2020 Megvii Inc. All rights reserved. * */ #include "./opr_defs.h" #include "./opr_helper.h" #include "./python_helper.h" #if MGB_ENABLE_OPR_MM #include "mm_handler.h" #endif #include "megbrain/opr/io.h" #include "megbrain/serialization/extern_c_opr_io.h" using namespace mgb; using namespace mgb::opr; SymbolVar _Opr::_axis_add_remove(SymbolVar src, const std::vector& axis, bool is_add, const OperatorNodeConfig &config) { using ADR = mgb::opr::AxisAddRemove; std::vector desc; mgb_assert(!axis.empty()); for (auto i: axis) { if (is_add) { desc.emplace_back(ADR::AxisDesc::make_add(i)); } else { desc.emplace_back(ADR::AxisDesc::make_remove(i)); } } return ADR::make(src, desc, config); } SymbolVarArray _Opr::param_pack_split( SymbolVar src, SymbolVar table, const std::vector>& shapes, const OperatorNodeConfig& config) { auto size = shapes.size(); mgb::TensorShapeArray shapearr(size); for (size_t i = 0; i < size; i++) { shapearr[i] = npy::vec2shape(shapes[i]); } if (!table.node()) { auto cn = src.node()->comp_node(); if (config.has_comp_node_set()) { cn = config.get_single_comp_node(); } auto table_val = megdnn::ParamPackSplit::gen_table( shapearr, cn.get_mem_addr_alignment(), src.dtype().size()); HostTensorND hv{cn, TensorShape{table_val.size()}, dtype::Int32{}}; memcpy(hv.raw_ptr(), table_val.data(), table_val.size() * sizeof(int)); table = opr::ImmutableTensor::make(*src.node()->owner_graph(), hv); } return mgb::opr::ParamPackSplit::make(src, table, shapearr, config); } #if MGB_ENABLE_OPR_MM #include "megbrain/opr/lock.h" #include "megbrain/opr/io_remote.h" SymbolVar _Opr::lock_acquire(SymbolVar var, size_t lock_id, size_t group_id, const OperatorNodeConfig &config) { return mgb::opr::LockAcquire::make(var, {lock_id, group_id}, config); } SymbolVar _Opr::lock_release(SymbolVar var, size_t lock_id, size_t group_id, const OperatorNodeConfig &config) { return mgb::opr::LockRelease::make(var, {lock_id, group_id}, config); } SymbolVar _Opr::remote_send( const std::string& server_addr, const int port, const std::string& key, SymbolVar var, const bool is_grad, const OperatorNodeConfig& config) { return RemoteSend::make({key, RemoteIOBase::Type::SEND, is_grad}, var, std::make_shared(ssprintf( "%s:%d", server_addr.c_str(), port)), config); } SymbolVar _Opr::remote_recv(const std::string& server_addr, const int port, const std::string& key, CompGraph& graph, const std::vector& shape, PyObject* dtype, const OperatorNodeConfig& config) { const TensorShape ishape = npy::vec2shape(shape); const DType idtype = npy::dtype_np2mgb(dtype); return RemoteRecv::make({key, RemoteIOBase::Type::RECV, false}, graph.get(), std::make_shared( ssprintf("%s:%d", server_addr.c_str(), port)), config, ishape, idtype); } SymbolVar _Opr::collective_comm_with_input( SymbolVar inpvar, const std::string& key, const size_t nr_devices, const uint32_t rank, const uint32_t root, const std::string& server_addr, const int port, PyObject* params, PyObject* dtype, const std::string& backend, SharedND* output_buf, const OperatorNodeConfig& config, const SharedScalar& disable) { SymbolVarArray inputs(1, inpvar); ComputingGraph* graph = inpvar.node()->owner_graph(); auto group_mgr = std::make_shared( ssprintf("%s:%d", server_addr.c_str(), port)); SmallVector> dev_buffer_arr(1, nullptr); if (output_buf) dev_buffer_arr[0] = output_buf->dev_tensor(); CollectiveComm::Param param = load_collective_comm_params(params, graph); mgb::DType _dtype = DType(); if (dtype != Py_None) { _dtype = npy::dtype_np2mgb(dtype); } return CollectiveComm::make(inputs, graph, key, nr_devices, rank, root, group_mgr, dev_buffer_arr, param, _dtype, backend, config, disable.get_val())[0]; } SymbolVar _Opr::collective_comm_without_input( CompGraph& cg, const std::string& key, const size_t nr_devices, const uint32_t rank, const uint32_t root, const std::string& server_addr, const int port, PyObject* params, PyObject* dtype, const std::string& backend, SharedND* output_buf, const OperatorNodeConfig& config, const SharedScalar& disable) { SymbolVarArray inputs; auto& graph = cg.get(); auto group_mgr = std::make_shared( ssprintf("%s:%d", server_addr.c_str(), port)); SmallVector> dev_buffer_arr(1, nullptr); if (output_buf) dev_buffer_arr[0] = output_buf->dev_tensor(); CollectiveComm::Param param = load_collective_comm_params(params, &graph); mgb::DType _dtype = DType(); if (dtype != Py_None) { _dtype = npy::dtype_np2mgb(dtype); } return CollectiveComm::make(inputs, &graph, key, nr_devices, rank, root, group_mgr, dev_buffer_arr, param, _dtype, backend, config, disable.get_val())[0]; } #else namespace { [[noreturn]] void on_opr_mm() { mgb_throw(MegBrainError, "opr-mm disabled at compile time"); } } SymbolVar _Opr::lock_acquire(SymbolVar var, size_t lock_id, size_t group_id, const OperatorNodeConfig &config) { on_opr_mm(); } SymbolVar _Opr::lock_release(SymbolVar var, size_t lock_id, size_t group_id, const OperatorNodeConfig &config) { on_opr_mm(); } SymbolVar _Opr::remote_send( const std::string& server_addr, const int port, const std::string& key, SymbolVar var, const bool is_grad, const OperatorNodeConfig& config) { on_opr_mm(); } SymbolVar _Opr::remote_recv(const std::string& server_addr, const int port, const std::string& key, CompGraph& graph, const std::vector& shape, PyObject* dtype, const OperatorNodeConfig& config) { on_opr_mm(); } SymbolVar _Opr::collective_comm_with_input( SymbolVar inpvar, const std::string& key, const size_t nr_devices, const uint32_t rank, const uint32_t root, const std::string& server_addr, const int port, PyObject* params, PyObject* dtype, const std::string& backend, SharedND* output_buf, const OperatorNodeConfig& config, const SharedScalar& disable) { on_opr_mm(); } SymbolVar _Opr::collective_comm_without_input( CompGraph& cg, const std::string& key, const size_t nr_devices, const uint32_t rank, const uint32_t root, const std::string& server_addr, const int port, PyObject* params, PyObject* dtype, const std::string& backend, SharedND* output_buf, const OperatorNodeConfig& config, const SharedScalar& disable) { on_opr_mm(); } #endif // MGB_ENABLE_OPR_MM SymbolVarArray _Opr::extern_c_opr_placeholder( const SymbolVarArray& inputs, const std::vector>& output_shapes, PyObject* output_dtypes, const char* dump_name, PyObject* data_bytes, const OperatorNodeConfig& config) { mgb_assert(PyBytes_Check(data_bytes)); if (output_dtypes != Py_None) { mgb_assert(PyTuple_Check(output_dtypes)); mgb_assert(output_shapes.size() == static_cast(PyTuple_Size(output_dtypes))); } TensorShapeArray cpp_output_shapes(output_shapes.size()); for (size_t i = 0; i < output_shapes.size(); ++i) { cpp_output_shapes[i] = npy::vec2shape(output_shapes[i]); } SmallVector cpp_output_dtypes; if (output_dtypes != Py_None) { size_t dtype_size = PyTuple_Size(output_dtypes); for (size_t i = 0; i < dtype_size; ++i) { cpp_output_dtypes.push_back( npy::dtype_np2mgb(PyTuple_GetItem(output_dtypes, i))); } } auto opr = opr::ExternCOprRunner::make_placeholder( inputs, cpp_output_shapes, dump_name, PyBytes_AsString(data_bytes), PyBytes_Size(data_bytes), config, cpp_output_dtypes); SymbolVarArray ret; ret.reserve(opr->output().size()); for (auto i: opr->output()) ret.emplace_back(i); return ret; } #if MGB_ENABLE_TENSOR_RT #include "megbrain/tensorrt/tensorrt_runtime_opr.h" SymbolVarArray _Opr::tensor_rt_runtime(const SymbolVarArray& inputs, PyObject* data_bytes, const OperatorNodeConfig& config) { mgb_assert(PyBytes_Check(data_bytes)); auto size = PyBytes_Size(data_bytes); mgb_assert(size, "trt data bytes should not be empty"); return opr::TensorRTRuntimeOpr::make(PyBytes_AsString(data_bytes), size, inputs, config); } #else SymbolVarArray _Opr::tensor_rt_runtime(const SymbolVarArray& inputs, PyObject* data_bytes, const OperatorNodeConfig& config) { mgb_throw(MegBrainError, "TensorRT disabled at compile time"); } #endif SymbolVar _Opr::timestamp(SymbolVar input, PyObject* dest, size_t dest_off, const OperatorNodeConfig& config) { auto tensor = std::make_shared( npy::np2tensor(dest, npy::Meth::must_borrow(), dtype::Float32{})); return opr::Timestamp::make(input, std::move(tensor), dest_off, config); } SymbolVar _Opr::virtual_loss(const SymbolVarArray& ys, const SymbolVarArray& y_grads, const OperatorNodeConfig& config) { return opr::VirtualLoss::make(ys, y_grads, {}, config); } SymbolVar _Opr::virtual_dep(const SymbolVarArray& symvars, const OperatorNodeConfig& config) { return opr::VirtualDep::make(symvars, config); } // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}