/** * \file imperative/python/src/trace.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2020 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or * implied. */ #include "./trace.h" #include "./helper.h" #include "megbrain/imperative/ops/autogen.h" namespace py = pybind11; namespace mgb::imperative::python { apply_result_t apply_trace(ApplyContext& ctx) { apply_result_t outputs; if (ctx.backward) { // reach here when compiled=True // call megbrain_graph.py apply(BackwardGraph, *args) auto args = py::tuple(ctx.nargs + 1); args[0] = py::cast(ctx.op); for (size_t i = 0; i < ctx.nargs; i++) { args[i + 1] = py::cast(ctx.args[i]->m_var); } py::object ret = py::reinterpret_steal( PyObject_Call(cpp_apply_backward_varnode, args.ptr(), nullptr)); if (!ret) { throw py::value_error("invalid py object call"); } // assumption: python function always returns PyList auto tup = py::reinterpret_borrow(ret); for (auto i = 0; i < tup.size(); i++) { auto pitem = tup[i].cast(); outputs.emplace_back(std::make_shared(pitem)); } return outputs; } PyObject* pyf; if (is_compiled) { // run apply in compiled mode, step 2, 3, etc pyf = cpp_apply_compiled_mode; } else { // run first step, both symbolic and non symbolic pyf = cpp_apply_with_tracing; } auto args = py::tuple(ctx.nargs + 1); args[0] = py::cast(ctx.op); for (size_t i = 0; i < ctx.nargs; i++) { args[i + 1] = TensorWrapper::make(ctx.args[i]->shared_from_this()); } auto ret = py::reinterpret_steal( PyObject_Call(pyf, args.ptr(), nullptr)); // assumption: python function always returns PyList auto tup = py::reinterpret_borrow(ret); for (auto i = 0; i < tup.size(); i++) { auto tw = TensorWrapper::try_cast(tup[i].ptr()); outputs.emplace_back(tw->m_tensor); } return outputs; } } // namespace mgb::imperative::python