/** * \file dnn/src/x86/conv_bias/f32/algos.h * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2020 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ #pragma once #include "src/x86/conv_bias/opr_impl.h" using namespace megdnn; using namespace x86; /* ===================== direct algo ===================== */ class ConvBiasImpl::AlgoDirect final : public AlgoBase { SmallVector get_kimpls(const NCBKernSizeParam& param) const; WorkspaceBundle get_bundle(const NCBKernSizeParam& param) const; static void copy_padding_kern(WorkspaceBundle bundle, const NCBKernParam& kern_param, const NCBKernIndex& ncb_index); static void do_conv_kern(WorkspaceBundle bundle, const NCBKernParam& kern_param, const NCBKernIndex& ncb_index); bool m_large_group; public: AlgoDirect(bool large_group) : m_large_group(large_group) {} bool is_reproducible() const override { return true; } const char* name() const override { return m_large_group ? "X86_CONV_BIAS_DIRECT_STRIDE1_LARGE_GROUP" : "X86_CONV_BIAS_DIRECT_STRIDE1_SMALL_GROUP"; } bool usable(FallbackConvBiasImpl* opr, const NCBKernSizeParam& param, AlgoSelectionStrategy algo_selection_strategy) const override; size_t get_workspace(FallbackConvBiasImpl* opr, const NCBKernSizeParam& param) const override; virtual SmallVector dispatch_kerns( fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const override { return get_kimpls(param); } void* type() const override; }; /* ===================== direct-stride2 algo ===================== */ class ConvBiasImpl::AlgoDirectStride2 final : public AlgoBase { SmallVector get_kimpls(const NCBKernSizeParam& param) const; WorkspaceBundle get_bundle(const NCBKernSizeParam& param) const; static void copy_padding_kern(WorkspaceBundle bundle, const NCBKernParam& kern_param, const NCBKernIndex& ncb_index); static void do_conv_kern(WorkspaceBundle bundle, const NCBKernParam& kern_param, const NCBKernIndex& ncb_index); bool m_large_group; public: AlgoDirectStride2(bool large_group) : m_large_group(large_group) {} bool is_reproducible() const override { return true; } const char* name() const override { return m_large_group ? "X86_CONV_BIAS_DIRECT_STRIDE2_LARGE_GROUP" : "X86_CONV_BIAS_DIRECT_STRIDE2_SMALL_GROUP"; } bool usable(FallbackConvBiasImpl* opr, const NCBKernSizeParam& param, AlgoSelectionStrategy algo_selection_strategy) const override; size_t get_workspace(FallbackConvBiasImpl* opr, const NCBKernSizeParam& param) const override; virtual SmallVector dispatch_kerns( fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const override { return get_kimpls(param); } void* type() const override; }; /* =========================== winograd ======================== */ class ConvBiasImpl::AlgoFP32WinogradF63_8x8 final : public AlgoBase { public: AlgoFP32WinogradF63_8x8(fallback::MatrixMulImpl::AlgoBase* matmul_algo, uint32_t tile_size) : m_matmul_algo{matmul_algo}, m_tile_size{tile_size} {} bool is_reproducible() const override { return true; } const char* name() const override { if (m_name.empty()) { m_name = ConvBiasImpl::algo_name( m_matmul_algo->name(), {8, 6, m_tile_size}); } return m_name.c_str(); } bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, AlgoSelectionStrategy algo_selection_strategy) const override; size_t get_workspace(fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const override; virtual SmallVector dispatch_kerns( fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param) const override; void* type() const override; private: fallback::MatrixMulImpl::AlgoBase* m_matmul_algo; mutable std::string m_name; uint32_t m_tile_size; }; class ConvBiasImpl::AlgoFP32WinogradF23_8x8 final : public AlgoBase { public: AlgoFP32WinogradF23_8x8(fallback::MatrixMulImpl::AlgoBase* matmul_algo, uint32_t tile_size) : m_matmul_algo{matmul_algo}, m_tile_size{tile_size} {} bool is_reproducible() const override { return true; } const char* name() const override { if (m_name.empty()) { m_name = ConvBiasImpl::algo_name( m_matmul_algo->name(), {8, 2, m_tile_size}); } return m_name.c_str(); } bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, AlgoSelectionStrategy algo_selection_strategy) const override; size_t get_workspace(fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const override; virtual SmallVector dispatch_kerns( fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param) const override; void* type() const override; private: fallback::MatrixMulImpl::AlgoBase* m_matmul_algo; mutable std::string m_name; uint32_t m_tile_size; }; /* ===================== matmul algo ===================== */ class ConvBiasImpl::AlgoMatrixMul final : public AlgoBase { static MatrixMul* get_matmul_opr(); static WorkspaceBundle get_bundle(const NCBKernSizeParam& param); static void kimpl(const NCBKernParam& param, const NCBKernIndex&); public: bool is_reproducible() const override { return true; } const char* name() const override { return "X86_CONV_BIAS_MATMUL"; } bool usable(FallbackConvBiasImpl*, const NCBKernSizeParam& param, AlgoSelectionStrategy) const override { auto&& fm = param.filter_meta; return fm.format == Param::Format::NCHW && fm.spatial_ndim == 2 && param.src_type.enumv() == DTypeEnum::Float32 && param.filter_type.enumv() == DTypeEnum::Float32 && param.dst_type.enumv() == DTypeEnum::Float32 && fm.dilation[0] == 1 && fm.dilation[1] == 1 && //! The matmul opr is only used in single thread //! TODO:support the no pack matmul algo in fallback im2col + //! matmul param.nr_threads == 1_z; } bool is_preferred(FallbackConvBiasImpl*, const NCBKernSizeParam&) const override; size_t get_workspace(FallbackConvBiasImpl*, const NCBKernSizeParam& param) const override { return get_bundle(param).total_size_in_bytes(); } SmallVector dispatch_kerns( FallbackConvBiasImpl* /*opr*/, const NCBKernSizeParam& param) const override { size_t group = param.filter_meta.group; return {{kimpl, {group, 1_z, 1_z}}}; } void* type() const override; }; #if defined(MEGDNN_X86_WITH_MKL_DNN) class ConvBiasImpl::AlgoMkldnnConv final : public AlgoBase { static void kern_mkldnn_fp32(const NCBKernParam& param, const NCBKernIndex&); public: AlgoMkldnnConv() {} bool is_reproducible() const override { return true; } const char* name() const override { return "MKLDNN_CONV_FP32"; } bool usable(FallbackConvBiasImpl*, const NCBKernSizeParam& param, AlgoSelectionStrategy) const override { auto&& fm = param.filter_meta; bool ok = (fm.format == param::ConvBias::Format::NCHW88) && fm.spatial_ndim == 2 && param.src_type.enumv() == DTypeEnum::Float32 && param.filter_type.enumv() == DTypeEnum::Float32 && param.dst_type.enumv() == DTypeEnum::Float32 && fm.dilation[0] == 1 && fm.dilation[1] == 1; return ok; }; size_t get_workspace(FallbackConvBiasImpl* /*opr*/, const NCBKernSizeParam&) const override { return 0; } SmallVector dispatch_kerns( FallbackConvBiasImpl* /*opr*/, const NCBKernSizeParam& /*param*/) const override { auto kern = [](const NCBKernParam& param, const NCBKernIndex& ncb_index) { kern_mkldnn_fp32(param, ncb_index); }; return {{kern, {1_z, 1_z, 1_z}}}; } void* type() const override; }; #endif // vim: syntax=cpp.doxygen