/** * \file dnn/src/x86/matrix_mul/algos.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or * implied. */ #include "src/common/utils.h" #include "src/fallback/matrix_mul/gemm_impl.h" #include "src/x86/matrix_mul/algos.h" #include "src/x86/matrix_mul/f32/strategy.h" #include "src/x86/matrix_mul/int8/strategy.h" #include "midout.h" MIDOUT_DECL(megdnn_x86_matmul_kern) MIDOUT_DECL(megdnn_x86_matmul_kern_mk8_8x8) MIDOUT_DECL(megdnn_x86_matmul_kern_mkldnn) using namespace megdnn; using namespace x86; /* ===================== F32 Blas algo ===================== */ namespace { void f32_blas_kern(const MatrixMulImpl::KernParam& kern_param) { #if MEGDNN_X86_WITH_MKL || MEGDNN_X86_WITH_OPENBLAS auto m = kern_param.M, n = kern_param.N, k = kern_param.K; bool trA = kern_param.trA, trB = kern_param.trB; const auto Aptr = kern_param.A(), Bptr = kern_param.B(); auto Cptr = kern_param.C(); auto Atrd = kern_param.LDA, Btrd = kern_param.LDB, Ctrd = kern_param.LDC; disable_denorm(); cblas_sgemm(CblasRowMajor, trA ? CblasTrans : CblasNoTrans, trB ? CblasTrans : CblasNoTrans, m, n, k, 1.0f, Aptr, Atrd, Bptr, Btrd, 0.0f, Cptr, Ctrd); #else megdnn_throw("a blas library is required"); #endif } #if MEGDNN_X86_WITH_MKL && SUPPORT_MKL_PACKED_GEMM void f32_blas_kern_only_packA(const MatrixMulImpl::KernParam& kern_param, const void* a_panel, const void* b_panel) { MEGDNN_MARK_USED_VAR(b_panel); auto m = kern_param.M, n = kern_param.N, k = kern_param.K; const auto Bptr = kern_param.B(); auto Cptr = kern_param.C(); auto Atrd = kern_param.LDA, Btrd = kern_param.LDB, Ctrd = kern_param.LDC; disable_denorm(); cblas_sgemm_compute(CblasRowMajor, CblasPacked, CblasNoTrans, m, n, k, static_cast(a_panel), Atrd, Bptr, Btrd, 0.0f, Cptr, Ctrd); } #endif } // anonymous namespace bool MatrixMulImpl::AlgoF32Blas::usable( const KernSizeParam& kern_size_param) const { #if MEGDNN_X86_WITH_MKL || MEGDNN_X86_WITH_OPENBLAS return kern_size_param.compute_mode == Param::ComputeMode::DEFAULT && kern_size_param.format == param::MatrixMul::Format::DEFAULT && kern_size_param.B_type == kern_size_param.A_type && kern_size_param.C_type == kern_size_param.A_type && kern_size_param.A_type == dtype::Float32() && preferred(kern_size_param); #else return false; #endif } MatrixMulImpl::kern_t MatrixMulImpl::AlgoF32Blas::get_kern( const KernSizeParam&) const { return f32_blas_kern; } /* ===================== AlgoF32BlasPackA====================== */ #if MEGDNN_X86_WITH_MKL && SUPPORT_MKL_PACKED_GEMM bool MatrixMulImpl::AlgoF32MKLPackA::usable( const KernSizeParam& kern_size_param) const { return kern_size_param.compute_mode == Param::ComputeMode::DEFAULT && kern_size_param.format == param::MatrixMul::Format::DEFAULT && kern_size_param.B_type == kern_size_param.A_type && kern_size_param.C_type == kern_size_param.A_type && kern_size_param.A_type == dtype::Float32() && preferred(kern_size_param); } MatrixMulImpl::kern_t MatrixMulImpl::AlgoF32MKLPackA::get_kern( const KernSizeParam&) const { return f32_blas_kern; } MatrixMulImpl::kern_naked_t MatrixMulImpl::AlgoF32MKLPackA::get_kern_naked( const KernSizeParam&) const { return f32_blas_kern_only_packA; } WorkspaceBundle MatrixMulImpl::AlgoF32MKLPackA::get_bundle( const KernSizeParam& param) const { auto M = param.M; auto N = param.N; auto K = param.K; size_t a_size = cblas_sgemm_pack_get_size(CblasAMatrix, M, N, K); return {nullptr, {a_size, 0, 0}}; } void MatrixMulImpl::AlgoF32MKLPackA::pack_A(const KernParam& kern_param, void* out, size_t index, size_t stride) const { MEGDNN_MARK_USED_VAR(stride); MEGDNN_MARK_USED_VAR(index); auto m = kern_param.M, n = kern_param.N, k = kern_param.K; const auto Aptr = kern_param.A(); auto Atrd = kern_param.LDA; disable_denorm(); cblas_sgemm_pack(CblasRowMajor, CblasAMatrix, CblasNoTrans, m, n, k, 1.0f, Aptr, Atrd, static_cast(out)); } #endif /* ===================== Int8 Vnni algo ===================== */ #if MEGDNN_X86_WITH_VNNI #define ALIGN_SIZE 64 namespace { void int8x8x32_kern_vnni(const MatrixMulImpl::KernParam& kern_param) { MEGDNN_MARK_USED_VAR(kern_param); MIDOUT_BEGIN(megdnn_x86_matmul_kern_vnni, midout_iv(0)) { auto M = kern_param.M, N = kern_param.N, K = kern_param.K; auto trA = kern_param.trA, trB = kern_param.trB; auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC; auto A_type = kern_param.A_type, B_type = kern_param.B_type, C_type = kern_param.C_type; const auto Aptr = kern_param.A(), Bptr = kern_param.B(); auto Cptr = kern_param.C(); x86::matmul::gemm_int8_vnni_12x32x4 strategy(M, N, K, A_type, B_type, C_type); megdnn::matmul::GemmInterleaved( M, N, K, trA, trB, strategy, ALIGN_SIZE) .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC, kern_param.workspace_ptr); } MIDOUT_END(); } size_t get_kern_workspace(MatrixMulImpl::KernSizeParam kern_size_param) { auto M = kern_size_param.M, N = kern_size_param.N, K = kern_size_param.K; auto trA = kern_size_param.trA, trB = kern_size_param.trB; auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type, C_type = kern_size_param.C_type; x86::matmul::gemm_int8_vnni_12x32x4 strategy(M, N, K, A_type, B_type, C_type); return megdnn::matmul::GemmInterleaved( M, N, K, trA, trB, strategy, ALIGN_SIZE) .get_workspace_size(); } } // namespace bool MatrixMulImpl::AlgoInt8x8x32Vnni::usable( const KernSizeParam& kern_size_param) const { return kern_size_param.A_type.enumv() == kern_size_param.B_type.enumv() && ((kern_size_param.A_type.enumv() == DTypeEnum::Int8 && kern_size_param.C_type.enumv() == DTypeEnum::Int32) || (kern_size_param.A_type.enumv() == DTypeEnum::QuantizedS8 && kern_size_param.C_type.enumv() == DTypeEnum::QuantizedS32)) && kern_size_param.compute_mode == Param::ComputeMode::DEFAULT && kern_size_param.format == Param::Format::DEFAULT && preferred(kern_size_param) && is_supported(SIMDType::VNNI); } size_t MatrixMulImpl::AlgoInt8x8x32Vnni::get_workspace( const KernSizeParam& kern_size_param) const { return get_kern_workspace(kern_size_param); } MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x32Vnni::get_kern( const KernSizeParam&) const { return int8x8x32_kern_vnni; } MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL_DETAIL( AlgoInt8x8x32Vnni, megdnn_x86_matmul_kern, "AlgoInt8x8x32Vnni"_hash, x86::matmul::gemm_int8_vnni_12x32x4, dt_int8, dt_int32, dt_uint8AlgoDataType::QINT8X8X32, DEFAULT); #endif /* ===================== Int8 mkldnn algo ===================== */ #if MEGDNN_X86_WITH_MKL_DNN namespace { void int8x8x32_kern_mkldnn(const MatrixMulImpl::KernParam& kern_param) { MEGDNN_MARK_USED_VAR(kern_param); MIDOUT_BEGIN(megdnn_x86_matmul_kern_mkldnn, midout_iv(0)) { const char transA = kern_param.trA ? 'T' : 'N'; const char transB = kern_param.trB ? 'T' : 'N'; const char offsetC = 'F'; const int64_t M = static_cast(kern_param.M); const int64_t N = static_cast(kern_param.N); const int64_t K = static_cast(kern_param.K); const int64_t LDA = static_cast(kern_param.LDA); const int64_t LDB = static_cast(kern_param.LDB); const int64_t LDC = static_cast(kern_param.LDC); const float alpha = 1.0f, beta = 0.0f; const int8_t ao = 0, bo = 0; const int32_t co = 0; const int8_t* A_ptr = static_cast(kern_param.A_ptr); const int8_t* B_ptr = static_cast(kern_param.B_ptr); int32_t* C_ptr = static_cast(kern_param.C_ptr); auto status = mkldnn_gemm_s8s8s32(transA, transB, offsetC, M, N, K, alpha, A_ptr, LDA, ao, B_ptr, LDB, bo, beta, C_ptr, LDC, &co); megdnn_assert(status == mkldnn_success, "mkldnn_gemm_s8s8s32 compute error!!!"); } MIDOUT_END(); } } // namespace bool MatrixMulImpl::AlgoInt8x8x32Mkldnn::usable( const KernSizeParam& kern_size_param) const { return kern_size_param.A_type.enumv() == kern_size_param.B_type.enumv() && ((kern_size_param.A_type.enumv() == DTypeEnum::Int8 && kern_size_param.C_type.enumv() == DTypeEnum::Int32) || (kern_size_param.A_type.enumv() == DTypeEnum::QuantizedS8 && kern_size_param.C_type.enumv() == DTypeEnum::QuantizedS32)) && kern_size_param.compute_mode == Param::ComputeMode::DEFAULT && kern_size_param.format == Param::Format::DEFAULT && is_supported(SIMDType::VNNI) && preferred(kern_size_param); } MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x32Mkldnn::get_kern( const KernSizeParam&) const { return int8x8x32_kern_mkldnn; } #endif namespace { void gemm_s8s8s32_avx2_2x4x16(const MatrixMulImpl::KernParam& kern_param) { MEGDNN_MARK_USED_VAR(kern_param); MIDOUT_BEGIN(megdnn_x86_matmul_kern_avx2_2x4x16, midout_iv(0)) { constexpr int cacheline = 64; const size_t m = kern_param.M; const size_t n = kern_param.N; const size_t k = kern_param.K; const bool trans_a = kern_param.trA; const bool trans_b = kern_param.trB; const size_t lda = kern_param.LDA; const size_t ldb = kern_param.LDB; const size_t ldc = kern_param.LDC; auto a_type = kern_param.A_type; auto b_type = kern_param.B_type; auto c_type = kern_param.C_type; const auto a_ptr = kern_param.A(); const auto b_ptr = kern_param.B(); auto c_ptr = kern_param.C(); x86::matmul::gemm_avx2_s8s8s32_2x4x16 strategy(m, n, k, a_type, b_type, c_type); megdnn::matmul::GemmInterleaved( m, n, k, trans_a, trans_b, strategy, cacheline) .execute(a_ptr, lda, b_ptr, ldb, c_ptr, ldc, kern_param.workspace_ptr); } MIDOUT_END(); } void gemm_s8s8s32_avx2_4x16x2(const MatrixMulImpl::KernParam& kern_param) { MEGDNN_MARK_USED_VAR(kern_param); MIDOUT_BEGIN(megdnn_x86_matmul_kern_avx2_4x16x2, midout_iv(0)) { constexpr int cacheline = 64; const size_t m = kern_param.M; const size_t n = kern_param.N; const size_t k = kern_param.K; const bool trans_a = kern_param.trA; const bool trans_b = kern_param.trB; const size_t lda = kern_param.LDA; const size_t ldb = kern_param.LDB; const size_t ldc = kern_param.LDC; auto a_type = kern_param.A_type; auto b_type = kern_param.B_type; auto c_type = kern_param.C_type; const auto a_ptr = kern_param.A(); const auto b_ptr = kern_param.B(); auto c_ptr = kern_param.C(); x86::matmul::gemm_avx2_s8s8s32_4x16x2 strategy(m, n, k, a_type, b_type, c_type); megdnn::matmul::GemmInterleaved( m, n, k, trans_a, trans_b, strategy, cacheline) .execute(a_ptr, lda, b_ptr, ldb, c_ptr, ldc, kern_param.workspace_ptr); } MIDOUT_END(); } void gemm_s8s8s32_sse_4x8x2(const MatrixMulImpl::KernParam& kern_param) { MEGDNN_MARK_USED_VAR(kern_param); MIDOUT_BEGIN(megdnn_x86_matmul_kern_sse_4x8x2, midout_iv(0)) { constexpr int cacheline = 64; x86::matmul::gemm_sse_s8s8s32_4x8x2 strategy( kern_param.M, kern_param.N, kern_param.K, kern_param.A_type, kern_param.B_type, kern_param.C_type); megdnn::matmul::GemmInterleaved( kern_param.M, kern_param.N, kern_param.K, kern_param.trA, kern_param.trB, strategy, cacheline) .execute(kern_param.A(), kern_param.LDA, kern_param.B(), kern_param.LDB, kern_param.C(), kern_param.LDC, kern_param.workspace_ptr); } MIDOUT_END(); } void gemm_f32_avx2_6x16(const MatrixMulImpl::KernParam& kern_param) { MEGDNN_MARK_USED_VAR(kern_param); MIDOUT_BEGIN(megdnn_x86_matmul_kern_avx2_6x16x2, midout_iv(0)) { constexpr int cacheline = 64; const size_t m = kern_param.M; const size_t n = kern_param.N; const size_t k = kern_param.K; const bool trans_a = kern_param.trA; const bool trans_b = kern_param.trB; const size_t lda = kern_param.LDA; const size_t ldb = kern_param.LDB; const size_t ldc = kern_param.LDC; auto a_type = kern_param.A_type; auto b_type = kern_param.B_type; auto c_type = kern_param.C_type; const auto a_ptr = kern_param.A(); const auto b_ptr = kern_param.B(); auto c_ptr = kern_param.C(); x86::matmul::sgemm_pack_6x16_avx2 strategy(m, n, k, a_type, b_type, c_type); megdnn::matmul::GemmInterleaved( m, n, k, trans_a, trans_b, strategy, cacheline) .execute(a_ptr, lda, b_ptr, ldb, c_ptr, ldc, kern_param.workspace_ptr); } MIDOUT_END(); } } // namespace /*************************AlgoInt8x8x16AVX2********************/ void MatrixMulImpl::AlgoInt8x8x16AVX2::gemm_s8s8s16_avx2_4x16x2( const MatrixMulImpl::KernParam& kern_param) { MEGDNN_MARK_USED_VAR(kern_param); MIDOUT_BEGIN(megdnn_x86_matmul_kern_avx2_4x16x2, midout_iv(1)) { constexpr int cacheline = 64; const size_t m = kern_param.M; const size_t n = kern_param.N; const size_t k = kern_param.K; const bool trans_a = kern_param.trA; const bool trans_b = kern_param.trB; const size_t lda = kern_param.LDA; const size_t ldb = kern_param.LDB; const size_t ldc = kern_param.LDC; auto a_type = kern_param.A_type; auto b_type = kern_param.B_type; auto c_type = kern_param.C_type; const auto a_ptr = kern_param.A(); const auto b_ptr = kern_param.B(); auto c_ptr = kern_param.C(); x86::matmul::gemm_avx2_s8s8s16_4x16x2 strategy(m, n, k, a_type, b_type, c_type); megdnn::matmul::GemmInterleaved( m, n, k, trans_a, trans_b, strategy, cacheline) .execute(a_ptr, lda, b_ptr, ldb, c_ptr, ldc, kern_param.workspace_ptr); } MIDOUT_END(); } MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x16AVX2::get_kern( const KernSizeParam&) const { return gemm_s8s8s16_avx2_4x16x2; } bool MatrixMulImpl::AlgoInt8x8x16AVX2::usable( const KernSizeParam& kern_size_param) const { bool is_ab_same = kern_size_param.A_type.enumv() == kern_size_param.B_type.enumv(); bool is_type_ok = ((kern_size_param.A_type.enumv() == DTypeEnum::Int8 && kern_size_param.C_type.enumv() == DTypeEnum::Int16) || (kern_size_param.A_type.enumv() == DTypeEnum::QuantizedS8 && kern_size_param.C_type.enumv() == DTypeEnum::QuantizedS16)); bool is_mode_ok = kern_size_param.compute_mode == Param::ComputeMode::DEFAULT && kern_size_param.format == Param::Format::DEFAULT && is_supported(SIMDType::AVX2); bool is_param_ok = is_ab_same && is_type_ok && is_mode_ok; return is_param_ok; } bool MatrixMulImpl::AlgoInt8x8x16AVX2::preferred(const KernSizeParam&) const { return true; } size_t MatrixMulImpl::AlgoInt8x8x16AVX2::get_workspace( const KernSizeParam& kern_param) const { constexpr int cacheline = 64; const size_t m = kern_param.M; const size_t n = kern_param.N; const size_t k = kern_param.K; const bool trans_a = kern_param.trA; const bool trans_b = kern_param.trB; auto a_type = kern_param.A_type; auto b_type = kern_param.B_type; auto c_type = kern_param.C_type; x86::matmul::gemm_avx2_s8s8s16_4x16x2 strategy(m, n, k, a_type, b_type, c_type); return megdnn::matmul::GemmInterleaved< x86::matmul::gemm_avx2_s8s8s16_4x16x2>( m, n, k, trans_a, trans_b, strategy, cacheline) .get_workspace_size(); } MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL_DETAIL( AlgoInt8x8x16AVX2, megdnn_x86_matmul_kern, "AlgoInt8x8x16AVX2"_hash, x86::matmul::gemm_avx2_s8s8s16_4x16x2, dt_int8, dt_int16, dt_int16, AlgoDataType::INT8X8X16, DEFAULT); /*************************AlgoInt8x8x16SSE********************/ void MatrixMulImpl::AlgoInt8x8x16SSE::gemm_s8s8s16_sse_4x8x2( const MatrixMulImpl::KernParam& kern_param) { MEGDNN_MARK_USED_VAR(kern_param); MIDOUT_BEGIN(megdnn_x86_matmul_kern_sse_4x8x2, midout_iv(2)) { constexpr int cacheline = 64; const size_t m = kern_param.M; const size_t n = kern_param.N; const size_t k = kern_param.K; const bool trans_a = kern_param.trA; const bool trans_b = kern_param.trB; const size_t lda = kern_param.LDA; const size_t ldb = kern_param.LDB; const size_t ldc = kern_param.LDC; auto a_type = kern_param.A_type; auto b_type = kern_param.B_type; auto c_type = kern_param.C_type; const auto a_ptr = kern_param.A(); const auto b_ptr = kern_param.B(); auto c_ptr = kern_param.C(); x86::matmul::gemm_sse_s8s8s16_4x8x2 strategy(m, n, k, a_type, b_type, c_type); megdnn::matmul::GemmInterleaved( m, n, k, trans_a, trans_b, strategy, cacheline) .execute(a_ptr, lda, b_ptr, ldb, c_ptr, ldc, kern_param.workspace_ptr); } MIDOUT_END(); } MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x16SSE::get_kern( const KernSizeParam&) const { return gemm_s8s8s16_sse_4x8x2; } bool MatrixMulImpl::AlgoInt8x8x16SSE::usable( const KernSizeParam& kern_size_param) const { bool is_ab_same = kern_size_param.A_type.enumv() == kern_size_param.B_type.enumv(); bool is_type_ok = ((kern_size_param.A_type.enumv() == DTypeEnum::Int8 && kern_size_param.C_type.enumv() == DTypeEnum::Int16) || (kern_size_param.A_type.enumv() == DTypeEnum::QuantizedS8 && kern_size_param.C_type.enumv() == DTypeEnum::QuantizedS16)); bool is_mode_ok = kern_size_param.compute_mode == Param::ComputeMode::DEFAULT && kern_size_param.format == Param::Format::DEFAULT && is_supported(SIMDType::SSE4_1); bool is_param_ok = is_ab_same && is_type_ok && is_mode_ok; return is_param_ok; } bool MatrixMulImpl::AlgoInt8x8x16SSE::preferred(const KernSizeParam&) const { return true; } size_t MatrixMulImpl::AlgoInt8x8x16SSE::get_workspace( const KernSizeParam& kern_param) const { constexpr int cacheline = 64; const size_t m = kern_param.M; const size_t n = kern_param.N; const size_t k = kern_param.K; const bool trans_a = kern_param.trA; const bool trans_b = kern_param.trB; auto a_type = kern_param.A_type; auto b_type = kern_param.B_type; auto c_type = kern_param.C_type; x86::matmul::gemm_sse_s8s8s16_4x8x2 strategy(m, n, k, a_type, b_type, c_type); return megdnn::matmul::GemmInterleaved( m, n, k, trans_a, trans_b, strategy, cacheline) .get_workspace_size(); } MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL_DETAIL(AlgoInt8x8x16SSE, megdnn_x86_matmul_kern, "AlgoInt8x8x16SSE"_hash, x86::matmul::gemm_sse_s8s8s16_4x8x2, dt_int8, dt_int16, dt_int16, AlgoDataType::INT8X8X16, DEFAULT); /*************************AlgoInt8x8x32AVX2M4N16K2********************/ MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x32AVX2M4N16K2::get_kern( const KernSizeParam&) const { return gemm_s8s8s32_avx2_4x16x2; } bool MatrixMulImpl::AlgoInt8x8x32AVX2M4N16K2::usable( const KernSizeParam& kern_size_param) const { bool is_param_ok = kern_size_param.A_type.enumv() == kern_size_param.B_type.enumv() && ((kern_size_param.A_type.enumv() == DTypeEnum::Int8 && kern_size_param.C_type.enumv() == DTypeEnum::Int32) || (kern_size_param.A_type.enumv() == DTypeEnum::QuantizedS8 && kern_size_param.C_type.enumv() == DTypeEnum::QuantizedS32)) && kern_size_param.compute_mode == Param::ComputeMode::DEFAULT && kern_size_param.format == Param::Format::DEFAULT && is_supported(SIMDType::AVX2); return is_param_ok; } size_t MatrixMulImpl::AlgoInt8x8x32AVX2M4N16K2::get_workspace( const KernSizeParam& kern_param) const { constexpr int cacheline = 64; const size_t m = kern_param.M; const size_t n = kern_param.N; const size_t k = kern_param.K; const bool trans_a = kern_param.trA; const bool trans_b = kern_param.trB; auto a_type = kern_param.A_type; auto b_type = kern_param.B_type; auto c_type = kern_param.C_type; x86::matmul::gemm_avx2_s8s8s32_4x16x2 strategy(m, n, k, a_type, b_type, c_type); return megdnn::matmul::GemmInterleaved< x86::matmul::gemm_avx2_s8s8s32_4x16x2>( m, n, k, trans_a, trans_b, strategy, cacheline) .get_workspace_size(); } MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL_DETAIL( AlgoInt8x8x32AVX2M4N16K2, megdnn_x86_matmul_kern, "AlgoInt8x8x32AVX2M4N16K2"_hash, x86::matmul::gemm_avx2_s8s8s32_4x16x2, dt_int8, dt_int32, dt_int16, AlgoDataType::QINT8X8X32, DEFAULT); MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x32AVX2M2N4K16::get_kern( const KernSizeParam&) const { return gemm_s8s8s32_avx2_2x4x16; } bool MatrixMulImpl::AlgoInt8x8x32AVX2M2N4K16::usable( const KernSizeParam& kern_size_param) const { return kern_size_param.A_type.enumv() == kern_size_param.B_type.enumv() && ((kern_size_param.A_type.enumv() == DTypeEnum::Int8 && kern_size_param.C_type.enumv() == DTypeEnum::Int32) || (kern_size_param.A_type.enumv() == DTypeEnum::QuantizedS8 && kern_size_param.C_type.enumv() == DTypeEnum::QuantizedS32)) && kern_size_param.compute_mode == Param::ComputeMode::DEFAULT && kern_size_param.format == Param::Format::DEFAULT && is_supported(SIMDType::AVX2); } size_t MatrixMulImpl::AlgoInt8x8x32AVX2M2N4K16::get_workspace( const KernSizeParam& kern_param) const { constexpr int cacheline = 64; const size_t m = kern_param.M; const size_t n = kern_param.N; const size_t k = kern_param.K; const bool trans_a = kern_param.trA; const bool trans_b = kern_param.trB; auto a_type = kern_param.A_type; auto b_type = kern_param.B_type; auto c_type = kern_param.C_type; x86::matmul::gemm_avx2_s8s8s32_2x4x16 strategy(m, n, k, a_type, b_type, c_type); return megdnn::matmul::GemmInterleaved< x86::matmul::gemm_avx2_s8s8s32_2x4x16>( m, n, k, trans_a, trans_b, strategy, cacheline) .get_workspace_size(); } MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(AlgoInt8x8x32AVX2M2N4K16, megdnn_x86_matmul_kern, "AlgoInt8x8x32AVX2M2N4K16"_hash, x86::matmul::gemm_avx2_s8s8s32_2x4x16, dt_int8, dt_int32, AlgoDataType::QINT8X8X32, DEFAULT); /*************************AlgoInt8x8x32SSEM4N8K2********************/ MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x32SSEM4N8K2::get_kern( const KernSizeParam&) const { return gemm_s8s8s32_sse_4x8x2; } bool MatrixMulImpl::AlgoInt8x8x32SSEM4N8K2::usable( const KernSizeParam& kern_size_param) const { return kern_size_param.A_type.enumv() == kern_size_param.B_type.enumv() && ((kern_size_param.A_type.enumv() == DTypeEnum::Int8 && kern_size_param.C_type.enumv() == DTypeEnum::Int32) || (kern_size_param.A_type.enumv() == DTypeEnum::QuantizedS8 && kern_size_param.C_type.enumv() == DTypeEnum::QuantizedS32)) && kern_size_param.compute_mode == Param::ComputeMode::DEFAULT && kern_size_param.format == Param::Format::DEFAULT && is_supported(SIMDType::SSE4_1); } size_t MatrixMulImpl::AlgoInt8x8x32SSEM4N8K2::get_workspace( const KernSizeParam& kern_param) const { constexpr int cacheline = 64; const size_t m = kern_param.M; const size_t n = kern_param.N; const size_t k = kern_param.K; const bool trans_a = kern_param.trA; const bool trans_b = kern_param.trB; auto a_type = kern_param.A_type; auto b_type = kern_param.B_type; auto c_type = kern_param.C_type; x86::matmul::gemm_sse_s8s8s32_4x8x2 strategy(m, n, k, a_type, b_type, c_type); return megdnn::matmul::GemmInterleaved( m, n, k, trans_a, trans_b, strategy, cacheline) .get_workspace_size(); } MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL_DETAIL(AlgoInt8x8x32SSEM4N8K2, megdnn_x86_matmul_kern, "AlgoInt8x8x32SSEM4N8K2"_hash, x86::matmul::gemm_sse_s8s8s32_4x8x2, dt_int8, dt_int32, dt_int16, AlgoDataType::QINT8X8X32, DEFAULT); /*************************AlgoF32MK8_8x8********************/ MatrixMulImpl::kern_t MatrixMulImpl::AlgoF32MK8_8x8::get_kern( const KernSizeParam&) const { auto f32_kern_mk8_8x8 = [](const MatrixMulImpl::KernParam& kern_param) { MIDOUT_BEGIN(megdnn_x86_matmul_kern_mk8_8x8, midout_iv(0)) { auto M = kern_param.M, N = kern_param.N, K = kern_param.K; auto trA = kern_param.trA, trB = kern_param.trB; auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC; auto A_type = kern_param.A_type, B_type = kern_param.B_type, C_type = kern_param.C_type; const auto Aptr = kern_param.A(), Bptr = kern_param.B(); auto Cptr = kern_param.C(); x86::matmul::sgemm_nopack_8x8_avx2 strategy(A_type, B_type, C_type); megdnn::matmul::GemmInterleaved(M, N, K, trA, trB, strategy) .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC, kern_param.workspace_ptr); } MIDOUT_END(); }; return f32_kern_mk8_8x8; } bool MatrixMulImpl::AlgoF32MK8_8x8::usable( const KernSizeParam& kern_size_param) const { constexpr static size_t MB = 8; constexpr static size_t KB = 8; return kern_size_param.compute_mode == Param::ComputeMode::DEFAULT && kern_size_param.B_type.enumv() == kern_size_param.A_type.enumv() && kern_size_param.C_type.enumv() == kern_size_param.A_type.enumv() && kern_size_param.A_type.enumv() == DTypeEnum::Float32 && kern_size_param.format == param::MatrixMul::Format::MK8 && !kern_size_param.trA && !kern_size_param.trB && kern_size_param.M % MB == 0 && kern_size_param.K % KB == 0 && is_supported(SIMDType::FMA); } size_t MatrixMulImpl::AlgoF32MK8_8x8::get_workspace( const KernSizeParam& kern_param) const { MIDOUT_BEGIN(megdnn_x86_matmul_kern_mk8_8x8, midout_iv(0)) { const size_t m = kern_param.M; const size_t n = kern_param.N; const size_t k = kern_param.K; const bool trans_a = kern_param.trA; const bool trans_b = kern_param.trB; auto a_type = kern_param.A_type; auto b_type = kern_param.B_type; auto c_type = kern_param.C_type; x86::matmul::sgemm_nopack_8x8_avx2 strategy(a_type, b_type, c_type); return megdnn::matmul::GemmInterleaved< x86::matmul::sgemm_nopack_8x8_avx2, false>( m, n, k, trans_a, trans_b, strategy) .get_workspace_size(); } MIDOUT_END(); } /*************************AlgoFloatAVX2M6N16********************/ MatrixMulImpl::kern_t MatrixMulImpl::AlgoFloatAVX2M6N16::get_kern( const KernSizeParam&) const { return gemm_f32_avx2_6x16; } bool MatrixMulImpl::AlgoFloatAVX2M6N16::usable( const KernSizeParam& kern_size_param) const { bool is_param_ok = kern_size_param.A_type.enumv() == kern_size_param.B_type.enumv() && ((kern_size_param.A_type.enumv() == DTypeEnum::Float32 && kern_size_param.C_type.enumv() == DTypeEnum::Float32)) && kern_size_param.compute_mode == Param::ComputeMode::DEFAULT && kern_size_param.format == Param::Format::DEFAULT && is_supported(SIMDType::AVX2); return is_param_ok; } size_t MatrixMulImpl::AlgoFloatAVX2M6N16::get_workspace( const KernSizeParam& kern_param) const { constexpr int cacheline = 64; const size_t m = kern_param.M; const size_t n = kern_param.N; const size_t k = kern_param.K; const bool trans_a = kern_param.trA; const bool trans_b = kern_param.trB; auto a_type = kern_param.A_type; auto b_type = kern_param.B_type; auto c_type = kern_param.C_type; x86::matmul::sgemm_pack_6x16_avx2 strategy(m, n, k, a_type, b_type, c_type); return megdnn::matmul::GemmInterleaved< x86::matmul::sgemm_pack_6x16_avx2>( m, n, k, trans_a, trans_b, strategy, cacheline) .get_workspace_size(); } MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL_DETAIL( AlgoFloatAVX2M6N16, megdnn_x86_matmul_kern, "AlgoFloatAVX2M6N16"_hash, x86::matmul::sgemm_pack_6x16_avx2, float, float, float, AlgoDataType::FLOAT32, DEFAULT); // vim: syntax=cpp.doxygen