#include "test/arm_common/fixture.h" #include "test/common/benchmarker.h" #include "test/common/checker.h" #include "test/common/pooling.h" #include "test/common/rng.h" #include "test/common/task_record_check.h" namespace megdnn { namespace test { TEST_F(ARM_COMMON, POOLING) { using Param = param::Pooling; // clang-format off for (size_t ih: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30}) for (size_t iw: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30}) for (size_t p: {1, 2}) { Param param; param.mode = Param::Mode::MAX; param.window_h = param.window_w = 3; param.stride_h = param.stride_w = 2; param.pad_h = param.pad_w = p; Checker checker(handle()); checker.set_param(param).exec({{2, 3, ih, iw}, {}}); param.mode = Param::Mode::AVERAGE; param.window_h = param.window_w = 3; param.stride_h = param.stride_w = 2; param.pad_h = param.pad_w = p; checker.set_param(param).exec({{2, 3, ih, iw}, {}}); param.mode = Param::Mode::MAX; param.window_h = param.window_w = 4; param.stride_h = param.stride_w = 2; param.pad_h = param.pad_w = p; checker.set_param(param).exec({{2, 3, ih, iw}, {}}); param.mode = Param::Mode::MAX; param.window_h = param.window_w = 5; param.stride_h = param.stride_w = 2; param.pad_h = param.pad_w = p; if (ih + p * 2 >= 5 && iw + p * 2 >= 5) checker.set_param(param).exec({{2, 3, ih, iw}, {}}); } for (size_t ih: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30}) for (size_t iw: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30}) for (size_t p: {1, 2}) { Param param; param.mode = Param::Mode::AVERAGE_COUNT_EXCLUDE_PADDING; param.window_h = param.window_w = 3; param.stride_h = param.stride_w = 1; param.pad_h = param.pad_w = p; Checker checker(handle()); checker.set_param(param).exec({{2, 3, ih, iw}, {}}); } // clang-format on } TEST_F(ARM_COMMON, POOLING_RECORD) { using Param = param::Pooling; TaskRecordChecker checker(0); // clang-format off for (size_t ih: {2, 3, 5, 7, 11, 13, 17}) for (size_t iw: {2, 3, 5, 7, 11, 13, 17}) for (size_t p: {1, 2}) { Param param; param.mode = Param::Mode::MAX; param.window_h = param.window_w = 3; param.stride_h = param.stride_w = 2; param.pad_h = param.pad_w = p; checker.set_param(param).exec({{2, 3, ih, iw}, {}}); param.mode = Param::Mode::AVERAGE; param.window_h = param.window_w = 3; param.stride_h = param.stride_w = 2; param.pad_h = param.pad_w = p; checker.set_param(param).exec({{2, 3, ih, iw}, {}}); param.mode = Param::Mode::MAX; param.window_h = param.window_w = 4; param.stride_h = param.stride_w = 2; param.pad_h = param.pad_w = p; checker.set_param(param).exec({{2, 3, ih, iw}, {}}); param.mode = Param::Mode::MAX; param.window_h = param.window_w = 5; param.stride_h = param.stride_w = 2; param.pad_h = param.pad_w = p; if (ih + p * 2 >= 5 && iw + p * 2 >= 5) checker.set_param(param).exec({{2, 3, ih, iw}, {}}); } for (size_t ih: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30}) for (size_t iw: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30}) for (size_t p: {1, 2}) { Param param; param.mode = Param::Mode::AVERAGE_COUNT_EXCLUDE_PADDING; param.window_h = param.window_w = 3; param.stride_h = param.stride_w = 1; param.pad_h = param.pad_w = p; Checker checker(handle()); checker.set_param(param).exec({{2, 3, ih, iw}, {}}); } // clang-format on } TEST_F(ARM_COMMON, POOLING_INT8_W2x2_S2x2) { // clang-format off for (size_t ih: {2, 3, 7, 13, 52, 53, 54, 55}) for (size_t iw: {2, 3, 6, 14, 53, 54, 55, 56}) for (size_t ph: {0, 1}) for (size_t pw: {0, 1}) if (ih+2*ph >= 3 && iw+2*pw >= 3) { Checker checker(handle()); checker.set_dtype(0, dtype::Int8()); param::Pooling param; param.mode = param::Pooling::Mode::MAX; param.pad_h = ph; param.pad_w = pw; param.stride_h = param.stride_w = 2; param.window_h = param.window_w = 2; checker.set_param(param).exec(TensorShapeArray{{2, 3, ih, iw}, {}}); } // clang-format on } TEST_F(ARM_COMMON, POOLING_INT8_W3x3_S2x2) { // clang-format off for (size_t ih: {2, 3, 7, 13, 52, 53, 54, 55}) for (size_t iw: {2, 3, 6, 14, 53, 54, 55, 56}) for (size_t ph: {0, 1, 2}) for (size_t pw: {0, 1, 2}) if (ih+2*ph >= 3 && iw+2*pw >= 3) { Checker checker(handle()); checker.set_dtype(0, dtype::Int8()); param::Pooling param; param.mode = param::Pooling::Mode::MAX; param.pad_h = ph; param.pad_w = pw; param.stride_h = param.stride_w = 2; param.window_h = param.window_w = 3; checker.set_param(param).exec(TensorShapeArray{{2, 3, ih, iw}, {}}); } // clang-format on } #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC TEST_F(ARM_COMMON, POOLING_FP16) { Checker checker(handle()); checker.set_dtype(0, dtype::Float16{}) .set_dtype(1, dtype::Float16{}) .set_epsilon(3e-3); using Param = param::Pooling; for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23}) for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23}) for (auto mode : {Param::Mode::AVERAGE, Param::Mode::MAX}) { for (size_t window : {2, 3}) { Param param; param.mode = mode; param.window_h = param.window_w = window; param.stride_h = param.stride_w = 1; param.pad_h = param.pad_w = window / 2; //! test for SH == 1 && SW == 1 && FH == FW (FH == 2 || FH //! == 3) checker.set_param(param).exec({{2, 3, ih, iw}, {}}); //! test for SH = SW = 2 && FH = FW = 2 param.stride_h = param.stride_w = 2; checker.set_param(param).exec({{2, 3, ih, iw}, {}}); } } //! test for SH == 2 && SW == 2 && FH == FW == 3 max pooling for (size_t ih : {2, 3, 7, 13, 52, 53, 54, 55}) for (size_t iw : {2, 3, 6, 14, 53, 54, 55, 56}) for (size_t ph : {0, 1, 2}) for (size_t pw : {0, 1, 2}) if (ih + 2 * ph >= 3 && iw + 2 * pw >= 3) { param::Pooling param; param.mode = param::Pooling::Mode::MAX; param.pad_h = ph; param.pad_w = pw; param.stride_h = param.stride_w = 2; param.window_h = param.window_w = 3; checker.set_param(param).exec( TensorShapeArray{{2, 3, ih, iw}, {}}); } //! test for SH == 2 && SW == 2 && FH = FW = 4 max pooling for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30}) for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30}) for (size_t p : {1, 2}) { Param param; param.mode = Param::Mode::MAX; param.window_h = param.window_w = 4; param.stride_h = param.stride_w = 2; param.pad_h = param.pad_w = p; checker.set_param(param).exec({{2, 3, ih, iw}, {}}); } //! test for SH == 2 && SW == 2 && FH = FW = 5 max pooling for (size_t ih : {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30}) for (size_t iw : {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30}) for (size_t p : {1, 2}) { Param param; param.mode = Param::Mode::MAX; param.window_h = param.window_w = 5; param.stride_h = param.stride_w = 2; param.pad_h = param.pad_w = p; checker.set_param(param).exec({{2, 3, ih, iw}, {}}); } } TEST_F(ARM_COMMON, POOLING_FP16_NCHW88) { Checker checker(handle()); checker.set_dtype(0, dtype::Float16{}); checker.set_dtype(1, dtype::Float16{}); checker.set_dtype(2, dtype::Float16{}); checker.set_dtype(4, dtype::Float16{}); checker.set_epsilon(0.003); for (size_t ic : {1, 2, 3, 5, 7, 11}) for (size_t ih : {20, 15}) for (size_t iw : {15, 20, 27, 51, 76, 101, 256}) for (size_t pad : {2, 3, 5}) for (auto mode : {param::Pooling::Mode::MAX, param::Pooling::Mode::AVERAGE}) { param::Pooling param; param.mode = mode; param.format = param::Pooling::Format::NCHW88; param.pad_h = pad; param.pad_w = pad; for (size_t kernel : {2, 3, 4, 5}) { if (kernel > pad && ih + 2 * pad >= kernel && iw + 2 * pad >= kernel) { param.window_h = param.window_w = kernel; param.stride_h = param.stride_w = 1; checker.set_param(param).exec( TensorShapeArray{{2, ic, ih, iw, 8}, {}}); param.stride_h = param.stride_w = 2; checker.set_param(param).exec( TensorShapeArray{{2, ic, ih, iw, 8}, {}}); } } for (size_t kernel : {9, 13}) { if (kernel > pad && ih + 2 * pad >= kernel && iw + 2 * pad >= kernel) { param.window_h = param.window_w = kernel; param.stride_h = param.stride_w = 1; checker.set_param(param).exec( TensorShapeArray{{2, ic, ih, iw, 8}, {}}); } } } } #endif TEST_F(ARM_COMMON, POOLING_QUANTIZED) { Checker checker(handle()); UniformIntRNG rng1{INT8_MIN >> 1, INT8_MAX >> 1}; UniformIntRNG rng2{0, UINT8_MAX >> 1}; using Param = param::Pooling; for (auto type : std::vector{ dtype::QuantizedS8(1.1f), dtype::Quantized8Asymm(1.1f, static_cast(3))}) { if (type.enumv() == DTypeEnum::QuantizedS8) { checker.set_rng(0, &rng1); } else { megdnn_assert(type.enumv() == DTypeEnum::Quantized8Asymm); checker.set_rng(0, &rng2); } for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23, 33, 49}) for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23, 33, 49}) for (auto mode : {Param::Mode::AVERAGE, Param::Mode::MAX}) { for (size_t window : {2, 3}) { Param param; param.mode = mode; param.window_h = param.window_w = window; param.stride_h = param.stride_w = 1; param.pad_h = param.pad_w = window / 2; //! test for SH == 1 && SW == 1 && FH == FW (FH == 2 || //! FH //! == 3) checker.set_param(param).exec({{2, 3, ih, iw}, {}}); //! test for SH = SW = 2 && FH = FW = 2 param.stride_h = param.stride_w = 2; checker.set_param(param).exec({{2, 3, ih, iw}, {}}); } } //! test for SH == 2 && SW == 2 && FH == FW == 3 max pooling for (size_t ih : {2, 3, 7, 13, 52, 53, 54, 55}) for (size_t iw : {2, 3, 6, 14, 53, 54, 55, 56}) for (size_t ph : {0, 1, 2}) for (size_t pw : {0, 1, 2}) if (ih + 2 * ph >= 3 && iw + 2 * pw >= 3) { param::Pooling param; param.mode = param::Pooling::Mode::MAX; param.pad_h = ph; param.pad_w = pw; param.window_h = param.window_w = 3; param.stride_h = param.stride_w = 2; checker.set_param(param).exec( TensorShapeArray{{2, 3, ih, iw}, {}}); } //! test for SH == 2 && SW == 2 && FH == FW == 4 max pooling for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30}) for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30}) for (size_t p : {1, 2}) { Param param; param.mode = Param::Mode::MAX; param.window_h = param.window_w = 4; param.stride_h = param.stride_w = 2; param.pad_h = param.pad_w = p; checker.set_param(param).exec({{2, 3, ih, iw}, {}}); } //! test for SH == 2 && SW == 2 && FH == FW == 5 max pooling for (size_t ih : {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30}) for (size_t iw : {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30}) for (size_t p : {1, 2}) { Param param; param.mode = Param::Mode::MAX; param.window_h = param.window_w = 5; param.stride_h = param.stride_w = 2; param.pad_h = param.pad_w = p; checker.set_param(param).exec({{2, 3, ih, iw}, {}}); } } } #if MEGDNN_WITH_BENCHMARK void benchmark_nchw44_fp32(Handle* handle) { using Param = param::Pooling; auto run = [&](size_t n, size_t c, size_t h, size_t w, size_t filter, size_t stride, size_t pad, Param::Mode mode) { Param param; param.window_h = param.window_w = filter; param.stride_h = param.stride_w = stride; param.pad_h = param.pad_w = pad; param.format = Param::Format::NCHW; param.mode = mode; TensorShape nchw_shape = {n, c, h, w}; TensorShape nchw44_shape = {n, c / 4, h, w, 4}; TensorLayout dst_layout; auto opr = handle->create_operator(); opr->param() = param; opr->deduce_layout({nchw_shape, dtype::Float32()}, dst_layout); float calc_amount = dst_layout.total_nr_elems() * param.window_h * param.window_w; Benchmarker benchmarker_float_nchw(handle); Benchmarker benchmarker_float_nchw44(handle); Benchmarker benchmarker_int_nchw44(handle); size_t RUN = 500; auto t1 = benchmarker_float_nchw.set_display(false) .set_times(RUN) .set_param(param) .exec({nchw_shape, {}}); param.format = Param::Format::NCHW44; auto t2 = benchmarker_int_nchw44.set_display(false) .set_times(RUN) .set_param(param) .execl({{nchw44_shape, dtype::QuantizedS8(1.0)}, {{}, dtype::QuantizedS8(1.0)}}); auto t3 = benchmarker_float_nchw44.set_display(false) .set_times(RUN) .set_param(param) .exec({nchw44_shape, {}}); printf("{%zu %zu %zu %zu} filter = %zu, stride = %zu pad = %zu\n" "nchw_fp32={%.3f ms, %.3f Mflops}, " "nchw44_int={%.3f ms, %.3f Mflops}, " "nchw44_fp32={%.3f ms, %.3f Mflops, speed_up %f}\n\n", n, c, h, w, filter, stride, pad, t1 / RUN, calc_amount / (t1 / RUN * 1000), t2 / RUN, calc_amount / (t2 / RUN * 1000), t3 / RUN, calc_amount / (t3 / RUN * 1000), t1 / t3); }; // Resnet50 run(1, 64, 112, 112, 3, 2, 1, param::Pooling::Mode::MAX); run(1, 2048, 7, 7, 7, 1, 0, param::Pooling::Mode::AVERAGE); // VGG16 run(1, 64, 224, 224, 2, 2, 0, param::Pooling::Mode::MAX); run(1, 128, 112, 112, 2, 2, 0, param::Pooling::Mode::MAX); run(1, 256, 56, 56, 2, 2, 0, param::Pooling::Mode::MAX); run(1, 512, 28, 28, 2, 2, 0, param::Pooling::Mode::MAX); run(1, 512, 14, 14, 2, 2, 0, param::Pooling::Mode::MAX); } TEST_F(ARM_COMMON, BENCHMARK_POOLING_NCHW44_FP32) { benchmark_nchw44_fp32(handle()); } TEST_F(ARM_COMMON_MULTI_THREADS, BENCHMARK_POOLING_NCHW44_FP32) { benchmark_nchw44_fp32(handle()); } #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC void benchmark_nchw88_fp16(Handle* handle) { using Param = param::Pooling; auto run = [&](size_t n, size_t c, size_t h, size_t w, size_t filter, size_t stride, size_t pad, Param::Mode mode) { Param param; param.window_h = param.window_w = filter; param.stride_h = param.stride_w = stride; param.pad_h = param.pad_w = pad; param.format = Param::Format::NCHW44; param.mode = mode; TensorShape nchw44_shape = {n, c / 4, h, w, 4}; TensorShape nchw88_shape = {n, c / 8, h, w, 8}; TensorLayout dst_layout; auto opr = handle->create_operator(); opr->param() = param; opr->deduce_layout({nchw44_shape, dtype::Float32()}, dst_layout); float calc_amount = dst_layout.total_nr_elems() * param.window_h * param.window_w; Benchmarker benchmarker_float16_nchw88(handle); Benchmarker benchmarker_float32_nchw44(handle); size_t RUN = 500; auto t1 = benchmarker_float32_nchw44.set_display(false) .set_times(RUN) .set_param(param) .exec({nchw44_shape, {}}); param.format = Param::Format::NCHW88; auto t2 = benchmarker_float16_nchw88.set_display(false) .set_dtype(0, dtype::Float16{}) .set_dtype(1, dtype::Float16{}) .set_dtype(2, dtype::Float16{}) .set_dtype(4, dtype::Float16{}) .set_times(RUN) .set_param(param) .exec({nchw88_shape, {}}); printf("{%zu %zu %zu %zu} filter = %zu, stride = %zu pad = %zu\n" "nchw44_fp32={%.3f ms, %.3f Mflops}, " "nchw88_fp16={%.3f ms, %.3f Mflops, speed_up %f}\n\n", n, c, h, w, filter, stride, pad, t1 / RUN, calc_amount / (t1 / RUN * 1000), t2 / RUN, calc_amount / (t2 / RUN * 1000), t1 / t2); }; // Resnet50 run(1, 64, 112, 112, 3, 2, 1, param::Pooling::Mode::MAX); run(1, 2048, 7, 7, 7, 1, 0, param::Pooling::Mode::AVERAGE); // VGG16 run(1, 64, 224, 224, 2, 2, 0, param::Pooling::Mode::MAX); run(1, 128, 112, 112, 2, 2, 0, param::Pooling::Mode::MAX); run(1, 256, 56, 56, 2, 2, 0, param::Pooling::Mode::MAX); run(1, 512, 28, 28, 2, 2, 0, param::Pooling::Mode::MAX); run(1, 512, 14, 14, 2, 2, 0, param::Pooling::Mode::MAX); } TEST_F(ARM_COMMON, BENCHMARK_POOLING_NCHW88_FP16) { benchmark_nchw88_fp16(handle()); } TEST_F(ARM_COMMON_MULTI_THREADS, BENCHMARK_POOLING_NCHW88_FP16) { benchmark_nchw88_fp16(handle()); } #endif TEST_F(ARM_COMMON, BENCHMARK_POOLING_INT8_W3x3_S2x2) { using Param = param::Pooling; auto run = [&](const TensorShapeArray& shapes, Param param) { auto handle_naive = create_cpu_handle(2); TensorLayoutArray layouts; layouts.emplace_back(shapes[0], dtype::Int8()); layouts.emplace_back(shapes[1], dtype::Int8()); Benchmarker benchmarker_naive(handle_naive.get()); Benchmarker benchmarker_float(handle()); Benchmarker benchmarker_int(handle()); size_t RUN = 10; auto t1 = benchmarker_naive.set_display(false) .set_times(RUN) .set_param(param) .exec(shapes); auto t2 = benchmarker_float.set_display(false) .set_times(RUN) .set_param(param) .exec(shapes); auto t3 = benchmarker_int.set_display(false) .set_times(RUN) .set_param(param) .execl(layouts); printf("naive=%.3fms float=%.3fms, int=%.3fms\n", t1 / RUN, t2 / RUN, t3 / RUN); auto speedup = t2 / t3; ASSERT_GE(speedup, 2.0); }; Param param; param.window_h = param.window_w = 3; param.stride_h = param.stride_w = 2; param.pad_h = param.pad_w = 1; std::cout << "3x3 with 2x2 stride max pooling:" << std::endl; run({{1, 3, 640, 480}, {}}, param); } TEST_F(ARM_COMMON, BENCHMARK_POOLING_W4x4_S2x2) { using Param = param::Pooling; auto run = [&](const TensorShapeArray& shapes, Param param) { std::cout << "N:" << shapes[0][0] << " " << "IC:" << shapes[0][1] << " " << "IH:" << shapes[0][2] << " " << "IW:" << shapes[0][3] << std::endl; auto handle_naive = create_cpu_handle(2); Benchmarker benchmarker_naive(handle_naive.get()); Benchmarker benchmarker_float(handle()); size_t RUN = 10; auto t1 = benchmarker_naive.set_display(false) .set_times(RUN) .set_param(param) .exec(shapes); auto t2 = benchmarker_float.set_display(false) .set_times(RUN) .set_param(param) .exec(shapes); TensorLayout dst_layout; auto opr = handle()->create_operator(); opr->param() = param; opr->deduce_layout({shapes[0], dtype::Float32()}, dst_layout); float calc_amount = dst_layout.total_nr_elems() * param.window_h * param.window_w; printf("naive={%.3fms, %.3fMflops}, neon={%.3fms, %.3fMflops}\n", t1 / RUN, calc_amount / (t1 / RUN * 1000), t2 / RUN, calc_amount / (t2 / RUN * 1000)); }; Param param; param.window_h = param.window_w = 4; param.stride_h = param.stride_w = 2; param.pad_h = param.pad_w = 1; std::cout << "4x4 with 2x2 stride max pooling:" << std::endl; run({{1, 24, 160, 128}, {}}, param); run({{1, 4, 240, 135}, {}}, param); run({{1, 32, 120, 67}, {}}, param); run({{1, 64, 60, 33}, {}}, param); } TEST_F(ARM_COMMON, BENCHMARK_POOLING_W5x5_S2x2) { using Param = param::Pooling; auto run = [&](const TensorShapeArray& shapes, Param param) { std::cout << "N:" << shapes[0][0] << " " << "IC:" << shapes[0][1] << " " << "IH:" << shapes[0][2] << " " << "IW:" << shapes[0][3] << std::endl; auto handle_naive = create_cpu_handle(2); Benchmarker benchmarker_naive(handle_naive.get()); Benchmarker benchmarker_float(handle()); size_t RUN = 10; auto t1 = benchmarker_naive.set_display(false) .set_times(RUN) .set_param(param) .exec(shapes); auto t2 = benchmarker_float.set_display(false) .set_times(RUN) .set_param(param) .exec(shapes); TensorLayout dst_layout; auto opr = handle()->create_operator(); opr->param() = param; opr->deduce_layout({shapes[0], dtype::Float32()}, dst_layout); float calc_amount = dst_layout.total_nr_elems() * param.window_h * param.window_w; printf("naive={%.3fms, %.3fMflops}, neon={%.3fms, %.3fMflops}\n", t1 / RUN, calc_amount / (t1 / RUN * 1000), t2 / RUN, calc_amount / (t2 / RUN * 1000)); }; Param param; param.window_h = param.window_w = 5; param.stride_h = param.stride_w = 2; param.pad_h = param.pad_w = 1; std::cout << "5x5 with 2x2 stride max pooling:" << std::endl; run({{1, 24, 160, 128}, {}}, param); run({{1, 4, 240, 135}, {}}, param); run({{1, 32, 120, 67}, {}}, param); run({{1, 64, 60, 33}, {}}, param); } TEST_F(ARM_COMMON, BENCHMARK_POOLING_FP16) { using Param = param::Pooling; auto run = [&](const TensorShapeArray& shapes, Param param) { TensorLayoutArray layouts; layouts.emplace_back(shapes[0], dtype::Float16()); layouts.emplace_back(shapes[1], dtype::Float16()); Benchmarker benchmarker_float(handle()); Benchmarker benchmarker_half(handle()); size_t RUN = 10; auto tf = benchmarker_float.set_display(false) .set_times(RUN) .set_param(param) .exec(shapes) / RUN; auto th = benchmarker_half.set_display(false) .set_times(RUN) .set_param(param) .execl(layouts) / RUN; TensorLayout dst_layout; auto opr = handle()->create_operator(); opr->param() = param; opr->deduce_layout({shapes[0], dtype::Float32()}, dst_layout); float computations = dst_layout.total_nr_elems() * param.window_h * param.window_w / (1024.f * 1024 * 1024); printf("float=%.3fms %f gflops, float16=%.3fms %f gflops speedup: %f\n", tf, computations / tf * 1e3, th, computations / th * 1e3, tf / th); }; Param param; param.window_h = param.window_w = 2; param.stride_h = param.stride_w = 1; param.pad_h = param.pad_w = 1; printf("2x2 with 1x1 stride max pooling:\n"); run({{1, 3, 640, 480}, {}}, param); for (size_t oh : {640, 128}) for (size_t ow : {480, 112}) { param.window_h = param.window_w = 3; param.stride_h = param.stride_w = 2; param.pad_h = param.pad_w = 1; param.mode = Param::Mode::AVERAGE; printf("3x3 with 2x2 stride average pooling.\n"); run({{1, 3, oh, ow}, {}}, param); for (size_t pw : {2, 3, 4, 5}) { param.window_h = param.window_w = pw; param.stride_h = param.stride_w = 2; param.pad_h = param.pad_w = 1; param.mode = Param::Mode::MAX; printf("%zux%zu with 2x2 stride max pooling:\n", pw, pw); run({{1, 3, oh, ow}, {}}, param); } } } TEST_F(ARM_COMMON, BENCHMARK_POOLING_QUANTIZED) { using Param = param::Pooling; auto run = [&](const TensorShapeArray& shapes, Param param) { auto handle_naive = create_cpu_handle(2); TensorLayoutArray layouts; layouts.emplace_back(shapes[0], dtype::QuantizedS8(1.1f)); layouts.emplace_back(shapes[1], dtype::QuantizedS8(1.1f)); Benchmarker benchmarker_int(handle()); Benchmarker benchmarker_naive(handle_naive.get()); size_t RUN = 10; auto time_int = benchmarker_int.set_display(false).set_times(RUN).set_param(param).exec( shapes) / RUN; auto time_naive = benchmarker_naive.set_display(false) .set_times(RUN) .set_param(param) .execl(layouts) / RUN; TensorLayout dst_layout; auto opr = handle()->create_operator(); opr->param() = param; opr->deduce_layout({shapes[0], dtype::QuantizedS8(1.1f)}, dst_layout); float computations = dst_layout.total_nr_elems() * param.window_h * param.window_w / (1024.f * 1024 * 1024); printf("naive=%.3fms %f gflops, int8=%.3fms %f gflops speedup: %f\n", time_naive, computations / time_naive * 1e3, time_int, computations / time_int * 1e3, time_naive / time_int); }; Param param; param.window_h = param.window_w = 2; param.stride_h = param.stride_w = 1; param.pad_h = param.pad_w = 1; printf("2x2 with 1x1 stride max pooling:\n"); run({{1, 3, 640, 480}, {}}, param); // clang-format off for (size_t oh : {640, 128}) for (size_t ow : {480, 112}) for (size_t pw : {2, 3, 4, 5}) { param.window_h = param.window_w = pw; param.stride_h = param.stride_w = 2; param.pad_h = param.pad_w = 1; printf("%zux%zu with 2x2 stride max pooling:\n", pw, pw); run({{1, 3, oh, ow}, {}}, param); } // clang-format on } #endif } // namespace test } // namespace megdnn // vim: syntax=cpp.doxygen