# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import os import platform import numpy as np import pytest from utils import opr_test import megengine.functional as F from megengine import tensor from megengine.core._trace_option import use_symbolic_shape from megengine.core.tensor.utils import astensor1d from megengine.distributed.helper import get_device_count_by_fork def test_eye(): dtype = np.float32 cases = [{"input": [10, 20]}, {"input": [30]}] for case in cases: np.testing.assert_allclose( F.eye(case["input"], dtype=dtype).numpy(), np.eye(*case["input"]).astype(dtype), ) np.testing.assert_allclose( F.eye(*case["input"], dtype=dtype).numpy(), np.eye(*case["input"]).astype(dtype), ) np.testing.assert_allclose( F.eye(tensor(case["input"]), dtype=dtype).numpy(), np.eye(*case["input"]).astype(dtype), ) def test_concat(): def get_data_shape(length: int): return (length, 2, 3) data1 = np.random.random(get_data_shape(5)).astype("float32") data2 = np.random.random(get_data_shape(6)).astype("float32") data3 = np.random.random(get_data_shape(7)).astype("float32") def run(data1, data2): return F.concat([data1, data2]) cases = [{"input": [data1, data2]}, {"input": [data1, data3]}] opr_test(cases, run, ref_fn=lambda x, y: np.concatenate([x, y])) def test_concat_device(): data1 = tensor(np.random.random((3, 2, 2)).astype("float32"), device="cpu0") data2 = tensor(np.random.random((2, 2, 2)).astype("float32"), device="cpu1") out = F.concat([data1, data2], device="cpu0") assert str(out.device).split(":")[0] == "cpu0" def test_stack(): data1 = np.random.random((3, 2, 2)).astype("float32") data2 = np.random.random((3, 2, 2)).astype("float32") data3 = np.random.random((3, 2, 2)).astype("float32") cases = [{"input": [data1, data2]}, {"input": [data1, data3]}] for ai in range(3): def run(data1, data2): return F.stack([data1, data2], axis=ai) opr_test(cases, run, ref_fn=lambda x, y: np.stack([x, y], axis=ai)) def test_split(): data = np.random.random((2, 3, 4, 5)).astype(np.float32) inp = tensor(data) mge_out0 = F.split(inp, 2, axis=3) mge_out1 = F.split(inp, [3], axis=3) np_out = np.split(data, [3, 5], axis=3) assert len(mge_out0) == 2 assert len(mge_out1) == 2 np.testing.assert_equal(mge_out0[0].numpy(), np_out[0]) np.testing.assert_equal(mge_out1[0].numpy(), np_out[0]) np.testing.assert_equal(mge_out0[1].numpy(), np_out[1]) np.testing.assert_equal(mge_out1[1].numpy(), np_out[1]) try: F.split(inp, 4) assert False except ValueError as e: pass try: F.split(inp, [3, 3, 5], axis=3) assert False except ValueError as e: assert str(e) == "Invalid nsplits_or_secions: [3, 3, 5]" def test_reshape(): x = np.arange(6, dtype="float32") xx = tensor(x) y = x.reshape(1, 2, 3) for shape in [ (1, 2, 3), (1, -1, 3), (1, tensor(-1), 3), np.array([1, -1, 3], dtype="int32"), tensor([1, -1, 3]), ]: yy = F.reshape(xx, shape) np.testing.assert_equal(yy.numpy(), y) def test_reshape_shape_inference(): x_shape_known = tensor([1, 2, 3, 4], dtype="float32") x_shape_unknown = F.broadcast_to(tensor([1.0]), shape=tensor([1, 1, 1, 1]).sum()) tshp_unknown = astensor1d((tensor([2]), tensor([2])), x_shape_known) tshp_known = astensor1d((2, 2), x_shape_known) tshp_known_unspec = astensor1d((2, -1), x_shape_known) def check_shape(output, target): source = output.shape if isinstance(source, tensor): source = source.numpy() np.testing.assert_equal(source, target) def func(x, target_shape): return x.reshape(target_shape) cases = [ {"input": [x_shape_known, tshp_unknown], "output": [(2, 2),]}, {"input": [x_shape_unknown, tshp_unknown], "output": [(2, 2),]}, {"input": [x_shape_known, tshp_known], "output": [(2, 2),]}, {"input": [x_shape_known, tshp_known_unspec], "output": [(2, 2),]}, {"input": [x_shape_unknown, tshp_known], "output": [(2, 2),]}, {"input": [x_shape_unknown, tshp_known_unspec], "output": [(2, 2),]}, ] opr_test(cases, func, compare_fn=check_shape, test_trace=True) def test_squeeze(): x = np.arange(6, dtype="float32").reshape(1, 2, 3, 1) xx = tensor(x) for axis in [None, 3, -4, (3, -4)]: y = np.squeeze(x, axis) yy = F.squeeze(xx, axis) np.testing.assert_equal(y, yy.numpy()) def test_expand_dims(): x = np.arange(6, dtype="float32").reshape(2, 3) xx = tensor(x) for axis in [2, -3, (3, -4), (1, -4)]: y = np.expand_dims(x, axis) yy = F.expand_dims(xx, axis) np.testing.assert_equal(y, yy.numpy()) def test_elemwise_dtype_promotion(): x = np.random.rand(2, 3).astype("float32") y = np.random.rand(1, 3).astype("float16") xx = tensor(x) yy = tensor(y) z = xx * yy np.testing.assert_equal(z.numpy(), x * y) z = xx + y np.testing.assert_equal(z.numpy(), x + y) z = x - yy np.testing.assert_equal(z.numpy(), x - y) def test_linspace(): cases = [ {"input": [1, 9, 9]}, {"input": [3, 10, 8]}, ] opr_test( cases, F.linspace, ref_fn=lambda start, end, step: np.linspace(start, end, step, dtype=np.float32), ) cases = [ {"input": [9, 1, 9]}, {"input": [10, 3, 8]}, ] opr_test( cases, F.linspace, ref_fn=lambda start, end, step: np.linspace(start, end, step, dtype=np.float32), ) cases = [ {"input": [1, tensor(9), 9]}, {"input": [tensor(1), 9, tensor(9)]}, ] opr_test( cases, F.linspace, ref_fn=lambda start, end, step: np.linspace(1, 9, 9, dtype=np.float32), ) def test_arange(): cases = [ {"input": [1, 9, 1]}, {"input": [2, 10, 2]}, ] opr_test( cases, F.arange, ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32), ) cases = [ {"input": [9, 1, -1]}, {"input": [10, 2, -2]}, ] opr_test( cases, F.arange, ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32), ) cases = [ {"input": [9.3, 1.2, -0.5]}, {"input": [10.3, 2.1, -1.7]}, ] opr_test( cases, F.arange, ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32), ) def test_round(): data1_shape = (15,) data2_shape = (25,) data1 = np.random.random(data1_shape).astype(np.float32) data2 = np.random.random(data2_shape).astype(np.float32) cases = [{"input": data1}, {"input": data2}] opr_test(cases, F.round, ref_fn=np.round) def test_flatten(): data0_shape = (2, 3, 4, 5) data1_shape = (4, 5, 6, 7) data0 = np.random.random(data0_shape).astype(np.float32) data1 = np.random.random(data1_shape).astype(np.float32) def compare_fn(x, y): assert x.shape[0] == y output0 = (2 * 3 * 4 * 5,) output1 = (4 * 5 * 6 * 7,) cases = [ {"input": data0, "output": output0}, {"input": data1, "output": output1}, ] opr_test(cases, F.flatten, compare_fn=compare_fn) output0 = (2, 3 * 4 * 5) output1 = (4, 5 * 6 * 7) cases = [ {"input": data0, "output": output0}, {"input": data1, "output": output1}, ] opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=1) output0 = (2, 3, 4 * 5) output1 = (4, 5, 6 * 7) cases = [ {"input": data0, "output": output0}, {"input": data1, "output": output1}, ] opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=2) output0 = (2, 3 * 4, 5) output1 = (4, 5 * 6, 7) cases = [ {"input": data0, "output": output0}, {"input": data1, "output": output1}, ] opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=1, end_axis=2) def test_broadcast(): input1_shape = (20, 30) output1_shape = (30, 20, 30) data1 = np.random.random(input1_shape).astype(np.float32) input2_shape = (10, 1) output2_shape = (20, 10, 20) data2 = np.random.random(input2_shape).astype(np.float32) def compare_fn(x, y): assert x.shape[0] == y cases = [ {"input": [data1, output1_shape], "output": output1_shape}, {"input": [data2, output2_shape], "output": output2_shape}, ] opr_test(cases, F.broadcast_to, compare_fn=compare_fn) x = F.ones((2, 1, 3)) with pytest.raises(RuntimeError): F.broadcast_to(x, (2, 3, 4)) with pytest.raises(RuntimeError): F.broadcast_to(x, (4, 1, 3)) with pytest.raises(RuntimeError): F.broadcast_to(x, (1, 3)) def test_utils_astensor1d(): reference = tensor(0) # literal x = [1, 2, 3] for dtype in [None, "float32"]: xx = astensor1d(x, reference, dtype=dtype) assert type(xx) is tensor np.testing.assert_equal(xx.numpy(), x) # numpy array x = np.asarray([1, 2, 3], dtype="int32") for dtype in [None, "float32"]: xx = astensor1d(x, reference, dtype=dtype) assert type(xx) is tensor np.testing.assert_equal(xx.numpy(), x.astype(dtype) if dtype else x) # tensor x = tensor([1, 2, 3], dtype="int32") for dtype in [None, "float32"]: xx = astensor1d(x, reference, dtype=dtype) assert type(xx) is tensor np.testing.assert_equal(xx.numpy(), x.numpy()) # mixed x = [1, tensor(2), 3] for dtype in [None, "float32"]: xx = astensor1d(x, reference, dtype=dtype) assert type(xx) is tensor np.testing.assert_equal(xx.numpy(), [1, 2, 3]) def test_device(): x = tensor([1, 2, 3], dtype="float32") y1 = F.eye(x.shape, dtype="float32") y2 = F.eye(x.shape, dtype="float32", device=None) np.testing.assert_almost_equal(y1.numpy(), y2.numpy()) y3 = F.eye(x.shape, dtype="float32", device="xpux") y4 = F.eye(x.shape, dtype="float32", device=x.device) np.testing.assert_almost_equal(y3.numpy(), y4.numpy()) y5 = F.full((3, 2), 4, device=x.device) y6 = F.full((3, 2), 4, device="xpux") np.testing.assert_almost_equal(y5.numpy(), y6.numpy()) def test_identity(): x = tensor(np.random.random((5, 10)).astype(np.float32)) y = F.copy(x) np.testing.assert_equal(y.numpy(), x) def copy_test(dst, src): data = np.random.random((2, 3)).astype(np.float32) x = tensor(data, device=src) y = F.copy(x, dst) assert np.allclose(data, y.numpy()) z = x.to(dst) assert np.allclose(data, z.numpy()) @pytest.mark.require_ngpu(1) def test_copy_h2d(): copy_test("cpu0", "gpu0") @pytest.mark.require_ngpu(1) def test_copy_d2h(): copy_test("gpu0", "cpu0") @pytest.mark.require_ngpu(2) def test_copy_d2d(): copy_test("gpu0", "gpu1") copy_test("gpu0:0", "gpu0:1")